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Abstract. We present a new equation with respect to a unit vector field on
Riemannian manifold Mn such that its solution defines a totally geodesic
submanifold in the unit tangent bundle with Sasaki metric and apply it to
some classes of unit vector fields. We introduce a class of covariantly normal
unit vector fields and prove that within this class the Hopf vector field is
a unique global one with totally geodesic property. For the wider class of
geodesic unit vector fields on a sphere we give a new necessary and sufficient
condition to generate a totally geodesic submanifold in T1S
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1. Introduction

This paper is organized as follows. In Section 2 we give definitions of harmonic
and minimal unit vector fields, rough Hessian and harmonicity tensor for the unit
vector field. In Section 3 we give definition of a totally geodesic unit vector field
and prove a basic Lemma 2 which gives a necessary and sufficient condition for
the unit vector field to be totaly geodesic. The Theorem 2 contains a necessary and
sufficient condition on strongly normal unit vector field to be minimal. In Section 4
we we apply the Lemma 2 to the case of a unit sphere (Lemma 4) and describe the
geodesic unit vector fields on the sphere with totally geodesic property (Theorem
5). We also introduce a notion of covariantly normal unit vector field and prove
that within this class the Hopf vector field is a unique one with a totally geodesic
property (Theorem 3). This theorem is a revised and simplified version of Theorem
2.1 from [27]. The Section 5 contains an observation that the Hopf vector field on
a unit sphere provides an example of global imbedding of Sasakian space form into
Sasakian manifold as a Sasakian space form (Theorem 6).
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2. Some Preliminaries

2.1. Sasaki Metric

Let (M, g) be n-dimensional Riemannian manifold with metric g. Denote by
〈

·, ·
〉

a scalar product with respect to g. A natural Riemannian metric on the tangent
bundle has been defined by S. Sasaki [20]. We describe it briefly in terms of the
connection map.
At each point Q = (q, ξ) ∈ TM the tangent space TQTM can be split into the
so-called vertical and horizontal parts:

TQTM = HQTM ⊕ VQTM.

The vertical part VQTM is tangent to the fiber, while the horizontal part is transver-
sal to it. If (u1, . . . , un; ξ1, . . . , ξn) form the natural induced local coordinate sys-
tem on TM , then for X̃ ∈ TQTMn we have

X̃ = X̃i∂/∂ui + X̃n+i∂/∂ξi

with respect to the natural frame {∂/∂ui, ∂/∂ξi} on TM .
Denote by π : TM → M the tangent bundle projection map. Then its differen-
tial π∗ : TQTM → TqM acts on X̃ as π∗X̃ = X̃i∂/∂xi and defines a linear
isomorphism between VQTM and TqM .

The so-called connection map K : TQTM → TqM acts on X̃ by the rule KX̃ =

(X̃n+i + Γi
jkξ

jX̃k)∂/∂ui and defines a linear isomorphism between HQTM and
TqM . The images π∗X̃ and KX̃ are called horizontal and vertical projections of
X̃ , respectively. It is easy to see that VQ = ker π∗|Q, HQ = kerK|Q.

Let X̃, Ỹ ∈ TQTM. The Sasaki metric on TM is defined by the following scalar
product

〈〈

X̃, Ỹ
〉〉∣

∣

Q
=

〈

π∗X̃, π∗Ỹ
〉∣

∣

q
+

〈

KX̃,KỸ
〉∣

∣

q

at each point Q = (q, ξ). Horizontal and vertical subspaces are mutually orthogo-
nal with respect to Sasaki metric.
The operations inverse to projections are called lifts. Namely, if X ∈ TqM

n, then
Xh = Xi∂/∂ui −Γi

jkξ
jXk∂/∂ξi is in HQTM and is called the horizontal lift of

X, and Xv = Xi∂/∂ξi is in VQTM and is called the vertical lift of X .
The Sasaki metric can be completely defined by scalar product of combinations of
lifts of vector fields from M to TM as

〈〈

Xh, Y h
〉〉∣

∣

Q
=

〈

X,Y
〉∣

∣

q
,

〈〈

Xh, Y v
〉〉∣

∣

Q
= 0,

〈〈

Xv, Y v
〉〉∣

∣

Q
=

〈

X,Y
〉∣

∣

q
.
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2.2. Harmonic and Minimal Unit Vector Fields

Suppose, as above, that u := (u1, . . . , un) are the local coordinates on Mn. Denote
by (u, ξ) := (u1, . . . , un; ξ1, . . . , ξn) the natural local coordinates in the tangent
bundle TMn. If ξ(u) is a (unit) vector field on Mn, then it defines a mapping

ξ : Mn → TMn or ξ : Mn → T1M
n, if |ξ| = 1,

given by ξ(u) = (u, ξ(u)).

For the mappings f : (M, g) → (N,h) between Riemannian manifolds the energy
of f is defined as

E(f) :=
1

2

∫

M
|d f |2 d V olM ,

where |d f | is a norm of 1-form d f in the co-tangent bundle T ∗M . Supposing on
T1M the Sasaki metric, the following definition becomes natural.

Definition 1. A unit vector field is called harmonic, if it is a critical point of energy
functional of mapping ξ : Mn → T1M

n.

Up to an additive constant, the energy functional of the mapping the is a total
bending of a unit vector field [24]

B(ξ) := cn

∫

M
|∇ξ |2 d V olM ,

where cn is some normalizing constant and |∇ξ|2 =
∑n

i=1 |∇ei
ξ|2 with respect to

orthonormal frame e1, . . . en.
Introduce a point-wise linear operator Aξ : TqM

n → ξ⊥q , acting as

AξX = −∇Xξ.

In case of integrable distribution ξ⊥, the unit vector field ξ is called holonomic [1].
In this case the operator Aξ is symmetric and is known as Weingarten or a shape
operator for each hypersurface of the foliation. In general, Aξ is not symmetric,
but formally preserves the Codazzi equation. Namely, a covariant derivative of Aξ

is defined by
−(∇XAξ)Y = ∇X∇Y ξ −∇∇XY ξ. (1)

Then for the curvature operator of Mn we can write down the Codazzi-type equa-
tion

R(X,Y )ξ = (∇Y Aξ)X − (∇XAξ)Y.

From this viewpoint, it is natural to call the operator Aξ as non-holonomic shape
operator. Remark, that the right hand side is, up to constant, a skew symmetric part
of covariant derivative of Aξ .
Introduce a symmetric tensor field

Hessξ(X,Y ) =
1

2

[

(∇Y Aξ)X + (∇XAξ)Y
]

, (2)
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which is a symmetric part of covariant derivative of Aξ . The trace

−
n

∑

i=1

Hessξ(ei, ei) := ∆ξ,

where e1, . . . en is an orthonormal frame, is known as rough Laplacian [2] of the
field ξ. Therefore, one can treat the tensor field (2) as a rough Hessian of the field.
With respect to given above notations, the unit vector field is harmonic if and only
if [24]

∆ξ = −|∇ξ|2ξ.

Introduce a tensor field

Hmξ(X,Y ) =
1

2

[

R(ξ,AξX)Y + R(ξ,AξY )X
]

, (3)

which is a symmetric part of tensor field R(ξ,AξX)Y . The trace

traceHmξ :=
n

∑

i=1

Hmξ(ei, ei)

is responsible for harmonicity of mapping ξ : M n → T1M
n in terms of general

notion of harmonic maps [10]. Precisely, a harmonic unit vector field ξ defines a
harmonic mapping ξ : Mn → T1M

n if and only if [11]

traceHmξ = 0.

From this viewpoint, it is natural to call the tensor field (3) as harmonicity tensor
of the field ξ.
Consider now the image ξ(Mn) ⊂ T1M

n with a pull-back Sasaki metric.

Definition 2. A unit vector field ξ on Riemannian manifold M n is called minimal
if the image of (local) imbedding ξ : Mn → T1M

n is minimal submanifold in the
unit tangent bundle T1M

n with Sasaki metric.

A number of results on minimal unit vector fields one can find in [4, 5, 6, 8, 12, 13,
14, 15, 16, 17, 19, 21, 22, 23]. In [25], the author has found explicitly the second
fundamental form of ξ(Mn) and presented some examples of unit vector fields of
constant mean curvature.

3. Totally Geodesic Unit Vector Fields

Definition 3. A unit vector field ξ on Riemannian manifold M n is called totally
geodesic if the image of (local) imbedding ξ : M n → T1M

n is totally geodesic
submanifold in the unit tangent bundle T1M

n with Sasaki metric.
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Using the explicit expression for the second fundamental form [25], the author gave
a full description of the totally geodesic (local) unit vector fields on 2-dimensional
Riemannian manifold.

Theorem 1. [28] Let (M 2, g) be a Riemannian manifold with a sign-preserving
Gaussian curvature K . Then M admits a totally geodesic unit vector field ξ if and
only if there is a local parametrization of M with respect to which the metric g is
of the form

ds2 = du2 + sin2 α(u) dv2,

where α(u) solves the differential equation
dα

du
= 1−

a + 1

cos α
. The corresponding

local unit vector field ξ is of the form

ξ = cos(av + ω0) ∂u +
sin(av + ω0)

sinα(u)
∂v,

where a, ω0 = const.

For the case of flat Riemannian 2-manifold, the totally geodesic unit vector field is
either parallel or moves helically along a pencil of parallel straight lines on a plane
with a constant angle speed [26] . It is easy to see that the following corollary is
true.

Corollary 1. Integral trajectories of a totally geodesic (local) unit vector field on
the non-flat Riemannian manifold M 2 are locally conformally equivalent to the
integral trajectories of totally geodesic unit vector field on a plane. Moreover, with
respect to Cartesian coordinates (x, y) on the plane, these integral trajectories are

x = c for a=0,

y(x) = − 1
a

ln | sin(ax)| + c for a 6= 0,

where c is a parameter.

In what follows, we present a new differential equation with respect to a unit vector
field such that its solution generates a totally geodesic submanifold in T1M

n.
In terms of horizontal and vertical lifts of vector fields from the base to its tangent
bundle, the differential of mapping ξ : M n → TMn is acting as

ξ∗X = Xh + (∇Xξ)v = Xh − (AξX)v, (4)

where ∇ means Levi-Civita connection on M n and the lifts are considered to
points of ξ(Mn).
It is well known that if ξ is a unit vector field on M n, then the vertical lift ξv is
a unit normal vector field on a hypersurface T1M

n ⊂ TMn. Since ξ is of unit
length, ξ∗X ⊥ ξv and hence in this case ξ∗ : TMn → T (T1M

n).
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Denote by At
ξ : ξ⊥q → TqM

n a formal adjoint operator
〈

AξX,Y
〉

q
=

〈

X,At
ξY

〉

q
.

Denote by ξ⊥ a distribution on Mn with ξ as its normal unit vector field. Then for
each vector field N ∈ ξ⊥, the vector field

Ñ = (At
ξN)h + N v (5)

is normal to ξ(Mn). Thus, (5) presents the normal distribution on ξ(M n).

Lemma 1. Let Mn be Riemannian manifold and T1M
n its unit tangent bundle

with Sasaki metric. Let ξ a smooth (local) unit vector field on M n. The second
fundamental form Ω̃Ñ of ξ(Mn) ⊂ T1M

n with respect to the normal vector field
(5) is of the form

Ω̃Ñ (ξ∗X, ξ∗Y ) = −
〈

Hessξ(X,Y ) + AξHmξ(X,Y ), N
〉

, (6)

where X and Y are arbitrary vector fields on M n.

Proof: By definition, we have

Ω̃Ñ (ξ∗X, ξ∗Y ) =
〈〈

∇̃ξ∗X ξ∗Y, Ñ
〉〉

(q,ξ(q))
,

where ∇̃ is the Levi-Civita connection of Sasaki metric on TM n. To calculate
∇̃ξ∗X ξ∗Y , we can use the formulas [18]

∇̃XhY h = (∇XY )h − 1
2(R(X,Y )ξ)v , ∇̃XvY h = 1

2(R(ξ,X)Y )h,

∇̃XhY v = (∇XY )v + 1
2(R(ξ, Y )X)h, ∇̃XvY v = 0.

A direct calculation yields

∇̃ξ∗X ξ∗Y =
(

∇XY + 1
2R(ξ,∇Xξ)Y + 1

2R(ξ,∇Y ξ)X
)h

+

(

∇X∇Y ξ −
1

2
R(X,Y )ξ

)v

.

The derivative above is not tangent to ξ(M n). It contains a projection on "external"
normal vector field, i.e. on ξv which is a unit normal of T1M

n inside TMn. To
correct the situation, we should subtract this projection, namely −

〈

∇Xξ,∇Y ξ
〉

ξ,
from the vertical part of the derivative.
Therefore, we have

Ω̃Ñ (ξ∗X, ξ∗Y ) =
〈

∇X∇Y ξ +
〈

∇Xξ,∇Y ξ
〉

ξ −
1

2
R(X,Y )ξ,N

〉

+

〈

∇XY +
1

2
R(ξ,∇Xξ)Y +

1

2
R(ξ,∇Y ξ)X,At

ξN
〉
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or, equivalently,

Ω̃Ñ (ξ∗X, ξ∗Y ) =
〈

∇X∇Y ξ +
〈

∇Xξ,∇Y ξ
〉

ξ −
1

2
R(X,Y )ξ+

Aξ

(

∇XY +
1

2
R(ξ,∇Xξ)Y +

1

2
R(ξ,∇Y ξ)X

)

, N
〉

.

Taking into account (1), (2), (3) and (5), and also

R(X,Y )ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X,Y ]ξ,

we can write

Ω̃Ñ (ξ∗X, ξ∗Y ) = −
〈

Hessξ(X,Y ) + AξHmξ(X,Y ), N
〉

which completes the proof. �

Lemma 2. Let Mn be Riemannian manifold and T1M
n its unit tangent bundle

with Sasaki metric. Let ξ be a smooth (local) unit vector field on M n. The vector
field ξ generates a totally geodesic submanifold ξ(M n) ⊂ T1M

n if and only if ξ
satisfies

Hessξ(X,Y ) + AξHmξ(X,Y ) −
〈

AξX,AξY
〉

ξ = 0 (7)

for all (local) vector fields X,Y on Mn.

Proof: Taking into account (6), the condition on ξ to be totally geodesic takes the
form

−Hessξ(X,Y ) − AξHmξ(X,Y ) = λ ξ.

Multiplying the equation above by ξ, we can find easily λ = −
〈

AξX,AξY
〉

. �

Follow [16], we call a unit vector field ξ strongly normal if
〈

(∇XAξ)Y,Z
〉

= 0

for all X,Y,Z ∈ ξ⊥. In other words, (∇XAξ)Y = λ ξ for all X,Y ∈ ξ⊥. It is
easy to find the function λ. Indeed, we have

λ =
〈

(∇XAξ)Y, ξ
〉

=
〈

∇∇XY ξ −∇X∇Y ξ, ξ
〉

=

−
〈

∇X∇Y ξ, ξ
〉

=
〈

∇Xξ,∇Y ξ
〉

.

Thus, the strongly normal unit vector field can be characterized by the equation

(∇XAξ)Y =
〈

AξX,AξY
〉

ξ (8)

for all X,Y ∈ ξ⊥.
The strong normality condition highly simplifies the second fundamental form of
ξ(Mn) ⊂ T1M

n. An orthonormal frame e1, e2, . . . , en is called adapted to the
field ξ if e1 = ξ and e2, . . . , en ∈ ξ⊥.
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Lemma 3. Let ξ be a unit strongly normal vector field on Riemannian manifold
Mn. With respect to the adapted frame, the matrical components of the second
fundamental form of ξ(Mn) ⊂ T1(M

n) simultaneously take the form

Ω̃Ñ =











∗ ∗ . . . ∗
∗ 0 . . . 0
...

...
...

∗ 0 . . . 0











.

Proof: Set Nσ = eσ (σ = 2, . . . , n). The condition (8) implies

R(X,Y )ξ = 0, Hessξ(X,Y ) =
〈

AξX,AξY
〉

ξ, Hmξ(X,Y ) ∼ ξ

for all X,Y ∈ ξ⊥. Therefore, with respect to the adapted frame

Ω̃σ(ξ∗eα, ξ∗eβ) = 0 (α, β = 2, . . . , n)

for all σ = 2, . . . , n. �

The following assertion is a natural corollary of the Lemma 3 .

Theorem 2. Let ξ be a unit strongly normal vector field. Denote by k the geodesic
curvature of its integral trajectories and by ν the principal normal unit vector field
of the trajectories. The field ξ is minimal if and only if

k[ξ, ν] + ξ(k)ν − kAξR(ν, ξ)ξ + k2ξ = 0

where [ξ, ν] = ∇ξν −∇νξ.

Proof: Indeed,

Ω̃σ(ξ∗e1, ξ∗e1) = −
〈

Hessξ(ξ, ξ) + AξHmξ(ξ, ξ), eσ

〉

Denote by ν a vector field of the principal normals of ξ-integral trajectories and by
k their geodesic curvature function. Then

Hessξ(ξ, ξ) = ∇∇ξξ −∇ξ∇ξξ = k∇νξ −∇ξ(kν) = k[ν, ξ] − ξ(k)ν,

Hmξ(ξ, ξ) = −R(ξ,∇ξξ)ξ = −kR(ξ, ν)ξ

and we get

Ω̃σ(ξ∗e1, ξ∗e1) =
〈

k[ξ, ν] + ξ(k)ν − kAξR(ν, ξ)ξ, eσ

〉

.

Finally, to be minimal, the field ξ should satisfy

k[ξ, ν] + ξ(k)ν − kAξR(ν, ξ)ξ = λ ξ.

Multiplying by ξ, we get

λ = k
〈

[ξ, ν], ξ
〉

= k
〈

∇ξν, ξ
〉

= −k2,

which completes the proof. �
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Thus, we get the following.

Corollary 2. [16] Every unit strongly normal geodesic vector field is minimal.

Most of examples of minimal unit vector fields in [16] are based on this Corollary.

4. The Case of a Unit Sphere

If the manifold is a unit sphere Sn+1, the equation (7) can be essentially simplified.

Lemma 4. A unit (local) vector field ξ on a unit sphere Sn+1 generates a totally
geodesic submanifold ξ(Sn+1) ⊂ T1S

n+1 if and only if ξ satisfies

(∇XAξ)Y =
1

2

[

(Lξ g)(X,Y )Aξξ +
〈

ξ,X
〉

(A2
ξY + Y )+

〈

ξ, Y
〉

(A2
ξX − X)

]

+
〈

AξX,AξY
〉

ξ,
(9)

where (Lξ g)(X,Y ) =
〈

∇Xξ, Y
〉

+
〈

X,∇Y ξ
〉

is a Lie derivative of metric tensor
in a direction of ξ.

Proof: Indeed, on a unit sphere

(∇Y Aξ)X − (∇XAξ)Y = R(X,Y )ξ =
〈

ξ, Y
〉

X −
〈

ξ,X
〉

Y.

Hence,

Hessξ(X,Y ) = (∇XAξ)Y +
1

2
[
〈

ξ, Y
〉

X −
〈

ξ,X
〉

Y ].

For Hmξ(X,Y ) we have

Hmξ(X,Y ) =
1

2

[

〈

∇Xξ, Y
〉

ξ −
〈

ξ, Y
〉

∇Xξ +
〈

∇Y ξ,X
〉

ξ −
〈

ξ,X
〉

∇Y ξ
]

=

1

2
(Lξ g)(X,Y ) ξ +

1

2

[

〈

ξ, Y
〉

AξX +
〈

ξ,X
〉

AξY
]

.

Finally, we find

(∇XAξ)Y =

1

2

[

(Lξ g)(X,Y )Aξξ+
〈

ξ,X
〉

(A2
ξY +Y )+

〈

ξ, Y
〉

(A2
ξX−X)

]

+
〈

AξX,AξY
〉

ξ.

�

Remind that the operator Aξ is symmetric if and only if the field ξ is holonomic,
and is skew-symmetric if and only if the field ξ is a Killing vector field. Both types
of these fields can be included into a class of covariantly normal unit vector fields.
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Definition 4. A regular unit vector field on Riemannian manifold is said to be
covariantly normal if the operator Aξ : TM → ξ⊥ defined by AξX = −∇Xξ
satisfies the normality condition

At
ξAξ = AξA

t
ξ

with respect to some orthonormal frame.

The integral trajectories of holonomic and Killing unit vector fields are always
geodesic. Every covariantly normal unit vector field possesses this property.

Lemma 5. Integral trajectories of a covariantly normal unit vector field are geo-
desic lines.

Proof: Suppose ξ is a unit covariantly normal vector field on a Riemannian mani-
fold Mn+1. Find a unit vector field ν1 such that

∇ξξ = −kν1.

Geometrically, the function k is a geodesic curvature of the integral trajectory of
the field ξ.
Complete up the pair (ξ, ν1) to the orthonormal frame (ξ, ν1, . . . νn). Then we can
set

∇ξξ = −kν1, ∇ναξ = −aβ
ανβ,

where α, β = 1, . . . , n. With respect to the frame (ξ, ν1, . . . νn) the matrix Aξ

takes the form

−Aξ =











0 k 0 . . . 0
0 a1

1 a1
2 . . . a1

n
...

...
...

...
...

0 an
1 an

2 . . . an
n











and as a consequence

−At
ξ =











0 0 0 . . . 0
k a1

1 a2
1 . . . an

1
...

...
...

...
...

0 a1
n a2

n . . . an
n











.

Therefore,

AξA
t
ξ =











k2 ka1
1 . . . kan

1

ka1
1 ∗ . . . ∗

...
...

...
...

kan
1 ∗ . . . ∗











, At
ξAξ =











0 0 . . . 0
0 ∗ . . . ∗
...

...
...

...
0 ∗ . . . ∗











and we conclude k = 0.
�



Minimal and Totally Geodesic Unit Vector Fields 11

Now we can easily prove the following theorem.

Theorem 3. Let ξ be a global covariantly normal unit vector field on a unit sphere
Sn+1. Then ξ is a totally geodesic if and only if n = 2m and ξ is a Hopf vector
field.

Proof: Suppose ξ is covariantly normal and totally geodesic. Then

Aξξ = −∇ξξ = 0

by Lemma 5 and the equation (9) takes the form

(∇XAξ)Y =
1

2

[

〈

ξ,X
〉

(A2
ξY +Y )+

〈

ξ, Y
〉

(A2
ξX−X)

]

+
〈

AξX,AξY
〉

ξ. (10)

Setting X = Y = ξ we get an identity. Set Y = ξ and take arbitrary unit X ⊥ ξ.
Then we get

2(∇XAξ)ξ + X = A2
ξX.

On the other hand, directly

(∇XAξ)ξ = −(∇X∇ξξ −∇∇Xξξ) = A2
ξX.

Hence,
A2

ξ

∣

∣

ξ⊥
= −E.

Therefore, n = 2m. Since Aξ is real normal linear operator, there exists an or-
thonormal frame such that

Aξ =





















0
0 1

−1 0
. . .

0 1
−1 0





















with zero all other entries. Therefore, Aξ + At
ξ = 0 and ξ is a Killing vector field.

Since ξ is supposed global, ξ is a Hopf vector field.
Finally, if we take X,Y ⊥ ξ, we get the equation

(∇XAξ)Y =
〈

AξX,AξY
〉

ξ.

But for a Killing vector field ξ we have [16]

(∇XAξ)Y = R(ξ,X)Y =
〈

X,Y
〉

ξ.

Since ξ is a Hopf vector field,
〈

AξX,AξY
〉

=
〈

X,Y
〉

. So, in this case we have an
identity.
If we suppose now that ξ is a Hopf vector field on a unit sphere, then ξ is covariantly
normal as a Killing vector field and totally geodesic [27] as a characteristic vector
field of a standard contact metric structure on S2m+1. �
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Theorem 3 is a correct and simplified version of Theorem 2.1 [27], where the
normality of the operator Aξ was implicitly used in a proof.
In the case of a weaker condition on the field ξ to be only a geodesic one, the result
is not so definite. We begin with some preparations.
The almost complex structure on TMn is defined by

JXh = Xv, JXv = −Xh

for all vector field X on Mn. Thus, TMn with Sasaki metric is an almost Kähle-
rian manifold. It is Kählerian if and only if M n is flat [9].
The unit tangent bundle T1M

n is a hypersurface in TMn with a unit normal vector
ξv at each point (q, ξ) ∈ T1M

n. Define a unit vector field ξ̄, a 1-form η̄ and a (1, 1)
tensor field ϕ̄ on T1M

n by

ξ̄ = −Jξv = ξh, JX = ϕ̄X + η̄(X)ξv .

The triple (ξ̄, η̄, ϕ̄) form a standard almost contact structure on T1M
n with Sasaki

metric gS . This structure is not almost contact metric one. By taking

ξ̃ = 2ξ̄ = 2ξh, η̃ =
1

2
η̄, ϕ̃ = ϕ̄, gcm =

1

4
gS

at each point (q, ξ) ∈ T1M
n, we get the almost contact metric structure (ξ̃, η̃, ϕ̃)

on (T1M
n, gcm).

In a case of a general almost contact metric manifold (M̃ , ξ̃, η̃, ϕ̃, g̃) the following
definition is known [7].

Definition 5. A submanifold N of a contact metric manifold (M̃, ξ̃, η̃, ϕ̃, g̃) is
called invariant if ϕ̃(TpN) ⊂ TpN and anti-invariant if ϕ̃(TpN) ⊂ (TpN)⊥ for
every p ∈ N .

If N is the invariant submanifold, then the characteristic vector field ξ̃ is tangent
to N at each of its points.
After all mentioned above, the following definition is natural [3].

Definition 6. A unit vector field ξ on a Riemannian manifold (M n, g) is called
invariant (anti-invariant) is the submanifold ξ(M n) ⊂ (T1M

n, gcm) is invariant
(anti-invariant).

It is easy to see from (4) that the invariant unit vector field is always a geodesic
one, i.e. its integral trajectories are geodesic lines.
Binh T.Q., Boeckx E. and Vanhecke L. have considered this kind of unit vector
fields [3] and proved the following theorem.

Theorem 4. A unit vector field ξ on (Mn, g) is invariant if and only if (ξ̃ = ξ , η̃ =
〈

·, ξ
〉

g
, ϕ̃ = Aξ) is an almost contact structure on Mn. In particular, ξ is a

geodesic vector field on Mn and n = 2m + 1.
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Now we can formulate the result.

Theorem 5. A unit geodesic vector field ξ on Sn+1 is totally geodesic if and only
if n = 2m and ξ is a strongly normal invariant unit vector field.

Proof: Suppose ξ is a geodesic and totally geodesic unit vector field. Then Aξξ =
0 and the equation (9) takes the form (10). Follow the proof of the Theorem 3, we
come to the following conditions on the field ξ:

A2
ξX = −X, (∇XAξ)Y =

〈

AξX,AξY
〉

ξ (11)

for all X,Y ∈ ξ⊥. From (11)1 we conclude that n = 2m. Comparing (11)2 with
(8), we see that ξ is a strongly normal vector field.
Consider now a (1, 1) tensor field ϕ = Aξ = −∇ξ and a 1-form η =

〈

· , ξ
〉

.
Taking into account (11)1 and Aξξ = 0, we see that

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0, η(X) = 1

for any vector field X on the sphere. Therefore, the triple

ϕ̃ = Aξ, ξ̃ = ξ, η̃ =
〈

· , ξ
〉

form an almost contact structure with the field ξ as a characteristic vector field of
this structure. By Theorem 4, the field ξ is invariant.
Conversely, suppose ξ is strongly normal and invariant on Sn+1. Then, by Theo-
rem 4, ξ is geodesic and n = 2m. The rest of the proof is a direct checking of the
formula (10). �

5. A Remarkable Property of the Hopf Vector Field

It is well-known that for a unit sphere Sn the standard contact metric structure on
T1S

n is a Sasakian one. If ξ is a Hopf unit vector field on S2m+1, then ξ is a
characteristic vector field of a standard contact metric structure on the unit sphere
S2m+1. By Theorem 4, the submanifold ξ(S2m+1) is invariant submanifold in
T1S

2m+1. Therefore, ξ(S2m+1) is also Sasakian with respect to the induced struc-
ture [29]. Since the Hopf vector field is strongly normal, by Theorem 5, the sub-
manifold ξ(S2m+1) is totally geodesic. The sectional curvature of the submanifold
ξ(S2m+1) was found in [27] and implies a remarkable corollary.

Theorem 6. Let ξ be a Hopf vector field on the unit sphere S2m+1. With respect
to the induced structure, the manifold ξ(S2m+1) is a Sasakian space form of ϕ-
curvature 5/4.

In other words, the Hopf vector field provides an example of embedding of a
Sasakian space form of ϕ-curvature 1 into Sasakian manifold such that the image
is contact, totally geodesic Sasakian space form of ϕ-curvature 5/4 with respect to
the induced structure.
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