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Abstract

We consider the problem on stability or instability of unit vector fields on
three-dimensional Lie groups with left-invariant metric which have totally geodesic
image in the unit tangent bundle with the Sasaki metric with respect to classical
variations of volume. We prove that among non-flat groups only SO(3) of constant
curvature +1 admits stable totally geodesic submanifolds of this kind. Restricting
the variations to left-invariant (i.e., equidistant) ones, we give a complete list of
groups which admit stable/unstable unit vector fields with totally geodesic image.

Introduction

Let (M, g) be the Riemannian manifold and ξ be a unit tangent vector field on M . Then
ξ can be considered as a local or global (if exists) immersion ξ : M → T1M into the
unit tangent bundle. The Sasaki metric g̃ on TM gives rise to the metric on T1M and
hence on ξ(M). In this way (ξ(M), g̃) gets definite intrinsic and extrinsic geometry.
Particularly, a unit vector field is said to be minimal or totally geodesic if ξ(M) is
a minimal or totally geodesic submanifold in (T1M, g̃). From the variation theory
viewpoint, a minimal unit vector field is a stationary point of the first local normal
variation of the volume functional of ξ(M). In other words, ξ is minimal unit vector
field if the mean curvature vector of ξ(M) ⊂ (T1M, g̃) vanishes; ξ is totally geodesic
unit vector field if all the second fundamental forms of ξ(M) ⊂ (T1M, g̃) vanish. We
refer to this kind of minimality as the classical.

A different type of volume variations and hence the minimality for a given unit
vector field was proposed in [12] and developed in [9, 10]. Denote by X1(M) a space
of all smooth unit vector fields on M . The variation of ξ within X1(M) gives rise to
variation of ξ(M) and hence the volume functional V olξ : X1(M) → R. We call this
type of variations by the field variations. A unit vector field ξ was called minimal, if
ξ is a stationary point of the latter functional. It was proved that this definition of
minimality is equivalent to the classical one, i.e. minimal unit vector field gives rise to
minimal immersion ξ : M → T1M . The minimality condition in a meaning of [10] was
expressed in terms of a special 1-form. There was constructed a number of examples
of minimal unit vector fields by using this 1-form [3, 4, 5, 13, 14, 8] (the list is not
complete). In the case of three-dimensional Lie group G with the left-invariant metric,
K. Tsukada and L. Vanhecke manage to find a list of all minimal left-invariant unit
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vector fields [17]. It was proved that each minimal left-invariant unit vector field on
three-dimensional unimodular Lie group is an eigenvector of the Ricci operator.

Prof. Borisenko A. (Sumy State University, Ukraine) was the first who asked on unit
vector fields with totally geodesic image in the unit tangent bundle of Riemannian man-
ifold. The author solved the problem in two-dimensional case [19] and have extracted
the subclass of totally geodesic fields on three-dimensional Lie groups by equalizing
to zero the whole second fundamental form [21]. As a result, it was proved that each
totally geodesic left-invariant unit vector field on three-dimensional unimodular Lie
group is the unit eigenvector of the Ricci operator of G with the eigenvalue 2, if exists.

The second variation formula for the ξ(M)-volume functional with respect to the
field variation was obtained in [11] and is very complicated to handle with. That is why
only little number of results concerning stability/instability are known. Particularly, a
minimal unit vector field on 2-dimensional Riemannian manifold is always stable with
respect to the field variations [11]. In application to the Hopf vector field on the unit
3-sphere it was also proved that it is minimal and stable [11]. Remark that the Hopf
vector field is totally geodesic one as well as the unit characteristic vector field of the
Sasakian structure [18].

On the other hand, there is a well-known formula for the second variation of vol-
ume [16] which allows to check stability/instability of minimal submanifold in the Rie-
mannian space with respect to local (or global, if admissible) normal variations of
the submanifold. We refer to this kind of stability as classical. This kind of stabil-
ity/instability is different from the one considered in [11] because the normal variation
of the ξ(M) gives rise to the wider class of the field variations. Namely, the variation
field can be non-orthogonal to ξ.

In some cases the normal variation of the minimal submanifold ξ(M) ⊂ T1M is
probably equivalent to the field variation of minimal unit vector field. The case of
totally geodesic left-invariant unit vector field on the three-dimensional Lie group with
the left-invariant metric gives a corresponding example. In [14] the authors tried to
check stability/instability of left-invariant unit vector fields from Tsukada-Vanhecke list
[17]. They have constructed the left-invariant variations of minimal unit left-invariant
vector field on compact quotient of unimodular three-dimensional Lie groups which
produce instability with respect to the field variations.

In this paper we check the list of all totally geodesic left-invariant unit vector fields
on three-dimensional Lie group G with the left-invariant metric and give stability or
instability conditions for them with respect to classical normal variations of domains in
ξ(G) ⊂ T1G. In the case of unimodular groups we conduct a complete proof for their
compact quotients for the sake of simplicity.

The main result (Theorem 2.2) says that only SO(3) of constant curvature +1
admits classically stable totally geodesic left-invariant unit vector field. We also give a
list of left invariant totally geodesic unit vector fields on unimodular three-dimensional
Lie groups with the left-invariant metric which are stable/unstable with respect to
classical left-invariant variations (Theorem 2.4).

Acknowledgement: the author thanks prof. Vladimir Rovensky (Haifa Univer-
sity, Israel) for hospitality during the 2-nd International Workshop on Geometry and
Symbolic Computations (Haifa, May 15 – 20, 2013) and the MAPLE developers for the
perfect tool in complicated calculations.
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1 Preliminaries.

The definition of the Sasaki metric is based on the bundle projection differential π∗ :
TTM → TM and the connection map K : TTM → TM [7]. For any X̃, Ỹ ∈ T(q,ξ)TM ,
we have

g̃(X̃, Ỹ ) = g(π∗X̃, π∗Ỹ ) + g(KX̃,KỸ ).

By definition, the vertical distribution V(q,ξ) = kerπ∗ and the horizontal one H(q,ξ) =
kerK. Then T(q,ξ)TM = V(q,ξ)⊕H(q,ξ) and the horizontal and vertical distributions are
mutually orthogonal with respect to g̃.

The horizontal and vertical lifts of a vector field X on the base are defined as the
unique vector fields Xh and Xv on TM such that

π∗Xh = X, π∗Xv = 0,

KXh = 0, KXv = X.

The h- and v- lifts of the tangent frame on M form the lifted frame on TM . As concerns
the unit tangent bundle, the lifted frame on T1M at (q, ξ) ∈ T1M is formed by h- lift
and the tangential lift [2] of the frame on M . The latter is defined by

Xtan = Xv − g(X, ξ)ξv.

Evidently, Xtan = Xv for all X from the orthogonal complement of the ”vector part”
of a point (q, ξ). We use this fact without special comments.

Denote by X(M) the Lie algebra of smooth vector fields on M and by Xξ⊥(M) the
orthogonal complement of a unit vector field ξ in X(M). If ξ is a unit vector field on
M , then it can be considered as a mapping ξ : M → T1M . Then its differential ξ∗
sends a vector field X ∈ X(M) into Tξ(M) by [20]

ξ∗X = Xh + (∇Xξ)tan = Xh + (∇Xξ)v,

where ∇ means the Riemannian connection of (M, g).
In what follows we use the notion of the Nomizu operator Aξ : X(M) → Xξ⊥(M)

given by
AξX = −∇Xξ.

Denote by At
ξ a conjugate Nomizu operator defined by g(AξX,Y ) = g(X,At

ξY ). Then
one can define the tangent ξ∗ : X(M) → Tξ(M) and the normal ν : X(M) → T⊥ξ(M)
mappings by

ξ∗(X) = Xh − (AξX)tan = Xh − (AξX)v,

ν(Y ) = (At
ξY )h + Y tan.

(1)

Then there are local orthonormal frames (e1, . . . , en) ∈ X(M) and (f1, . . . , fn−1) ∈ Xξ⊥

such that
Aξei = σifi, At

ξfi = σiei,

where σi ≥ 0 are the singular values of the linear operator Aξ. In fact, ei are the
eigenvectors of the symmetric linear operator At

ξAξ and its eigenvalues are the squares
of the singular values.
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By dimension reasons, there is at least local unit vector field e0 such that Aξe0 = 0.
Then

ẽα = ξ∗(eα)
|ξ∗(eα)| = 1√

1+σ2
α

(eh
α − σαfv

α), ẽn = eh
0 ,

ñα = ν(fα)
|ν(fα)| = 1√

1+σ2
α

(σαeh
α + fv

α) α = 1, . . . , n− 1
(2)

form the tangent and normal framing over ξ(M) ⊂ T1M . We call this framing the
singular one. If ξ is a geodesic unit vector field, i.e. Aξξ = 0, then one can always put
ẽn = ξh.

Let ñ = ν(Z)
|ν(Z)| be a unit normal vector field on ξ(M) and F ⊂ M be a domain with

a compact closeur. Denote by Ñ = wñ a local normal variation vector field, where
w : F → R is a smooth function such that w|∂F̄ = 0. Suppose ξ(M) is minimal. Then
the formula for second variation of the volume in application to our case takes the form

δ2(V olξ) =
∫

ξ(F )

(
||∇̃⊥Ñ ||2 − (R̃ic(Ñ) + ||S̃Ñ ||2)

)
dV olξ,

where ∇̃⊥ means the covariant derivative in the normal bundle of ξ(M), R̃ic(Ñ) is the
partial Ricci curvature and S̃ is the shape operator of ξ(M).

In the case of compact orientable M and totally geodesic ξ(M) the formula takes a
simpler form, namely

δ2V olξ =
∫

ξ(M)

n∑

i=1

(
||∇̃⊥ẽi

Ñ ||2 − w2K̃(ẽi, ñ)
)

dV olξ.

Finally remark, that

dV olξ =
√

det(I + At
ξAξ) dV := L1/2dV,

where dV is the volume element of the base manifold. That is why one can rewrite the
formula of the second variation as follows

δ2V olξ =
∫

M

n∑

i=1

(
||∇̃⊥ẽi

Ñ ||2 − w2K̃(ẽi, ñ)
)

L1/2dV. (3)

In the next sections we simplify this formula in application to three-dimensional Lie
groups with the left-invariant metric.

2 Three-dimensional unimodular Lie groups with the left-
invariant metric.

Let ξ be a unit left-invariant vector field on the three-dimensional Lie group G with
the left-invariant Riemannian metric. The group G is unimodular if and only if there is
a discrete subgroup Γ acting on G by left translations free and properly discontinuous
such that the left quotient Γ\G is compact [15]. The Γ\G is a compact Riemannian
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manifold with the same curvature properties as G. The descended unit vector field has
the same properties concerning minimality, harmonicity etc. as the one on G [14].

For each three-dimensional unimodular Lie group G, there is an orthonormal frame
e1, e2, e3 such that [15]

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3. (4)

We will refer to this frame as to the canonical one. This frame consists of eigenvectors
of the Ricci curvature operator. Each frame vector field is the Killing one and hence
geodesic. The Levi-Civita connection coefficients on G can be easily find, namely µi =
1
2(λ1+λ2+λ3)−λi, and the frame covariant derivatives takes the form∇eiek = µi ei×ek.
It is also well-known that the principal Ricci curvatures are ρi = 2µjµk and the basic
sectional curvatures are kij := g(R(ei, ej)ej , ei) = 1

2(ρi + ρj − ρk), where i, j, k are all
different.

The constants λ1, λ2, λ3 define the topological structure of G in the following sense:

Signs of λ1, λ2, λ3 Associated Lie group
+, +, + SO(3)
+, +,− SL(2,R)
+, +, 0 E(2)
+, 0,− E(1, 1)
+, 0, 0 Nil3 (Heisenberg group)
0, 0, 0 R⊕ R⊕ R

The class of left-invariant totally geodesic unit vector fields on three-dimensional uni-
modular Lie group G can be described as the eigenvectors of the Ricci operator asso-
ciated with the eigenvalue 2, if exists [21]. Namely,

ρ1 ρ2 ρ3 µ1 µ2 µ3 ξ

0 0 0 0 0 0 S
0 0 0 6= 0 0 0 ±e1, cos t e2 + sin t e3

0 0 0 0 6= 0 0 ±e2, cos t e1 + sin t e3

0 0 0 0 0 6= 0 ±e3, cos t e1 + sin t e2

2 ±e1

2 ±e2

2 ±e3

2 2 cos t e1 + sin t e2

2 2 cos t e1 + sin t e3

2 2 cos t e2 + sin t e3

2 2 2 S
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where S stands for vector fields of the form ξ = cos t cos s e1 +cos t sin s e2 +sin t e3 with
arbitrary fixed parameters t and s . The detailed analysis of the table above yields the
following result [21].

Theorem 2.1 Let G be three-dimensional unimodular Lie group with the left-invariant
metric. Let {ei, i = 1, 2, 3} be the canonical frame of its Lie algebra. Set for definiteness
λ1 ≥ λ2 ≥ λ3. Then the totally geodesic left-invariant unit vector fields on (compact
quotient of ) G are the following:

G or Γ\G Conditions on λ1, λ2, λ3 ξ

SO(3) λ1 = λ2 = λ3 = 2 S
λ1 = λ2 = λ > λ3 = 2 ±e3

λ1 = λ2 = λ > 2 > λ3 = λ−√λ2 − 4 cos t e1 + sin t e2

λ1 = 2 > λ2 = λ3 = λ > 0 ±e1

λ1 = λ +
√

λ2 − 4 > λ = λ2 = λ3 > 2 cos t e2 + sin t e3

λ1 > λ2 > λ3 > 0, λ2
m − (λi − λk)2 = 4 ±em (i,k,m=1,2,3)

SL(2, R) λ2
3 − (λ1 − λ2)2 = 4 ±e3

λ2
1 − (λ2 − λ3)2 = 4 ±e1

E(2) λ1 = λ2 > 0, λ3 = 0 ±e3, cos t e1 + sin t e2

λ2
1 − λ2

2 = 4, λ1 > λ2 > 0, λ3 = 0 ±e1

E(1, 1) λ2
3 − λ2

1 = 4, λ1 > 0, λ2 = 0, λ3 < 0 ±e3

λ2
1 − λ2

3 = 4, λ1 > 0, λ2 = 0, λ3 < 0 ±e1

Nil3 λ1 = 2, λ2 = 0, λ3 = 0 ±e1

R⊕R⊕R λ1 = λ2 = λ3 = 0 S
where S stands for vector fields of the form ξ = cos t cos s e1 +cos t sin s e2 +sin t e3 with
arbitrary fixed parameters t and s.

For any left invariant vector field ξ = x1e1 + x2e2 + x3e3 we have ∇eiξ = µi ei × ξ
and as a consequence, with respect to the canonical frame, we have

Aξ =




0 −µ2x3 µ3x2

µ1x3 0 −µ3x1

−µ1x2 µ2x1 0


 (5)

To calculate the integrand in (3), we need some Lemmas.

Lemma 2.1 Let ξ := em be a totally geodesic left-invariant unit vector field on (com-
pact quotient of) unimodular three-dimensional Lie group G with left-invariant metric.
Then the normal bundle connection coefficients of ξ(G) with respect to framing (1) are

γ̃i
j|s = −1

2
kijδsm ((i < j) 6= m),

where kij means the sectional curvature of G along ei ∧ ej.

Proof. We will conduct the proof for ξ = e3. Observe that since ξ is supposed totally
geodesic, the principal Ricci curvature ρ3 = 2 and hence µ1µ2 = 1

2ρ3 = 1. From (5) we
get

Aξ =




0 −µ2 0
µ1 0 0
0 0 0


 , At

ξ =




0 µ1 0
−µ2 0 0
0 0 0


 , At

ξAξ =




µ2
1 0 0

0 µ2
2 0

0 0 0


 .
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Hence, the e1, e2 can be taken as the vectors of singular frame. Since

Aξe1 = µ1e2, Aξe2 = −µ2e1,

we may put σ1 = µ1, σ2 = µ2 and take f1 = e2, f2 = −e1. Then the framing (2) takes
the form

ẽ1 =
( 1√

1 + µ2
1

e1

)h
−

( µ1√
1 + µ2

1

e2

)v
, ẽ2 =

( 1√
1 + µ2

2

e2

)h
+

( µ2√
1 + µ2

2

e1

)v
, ẽ3 = (e3)h

(6)

ñ1 =
( µ1√

1 + µ2
1

e1

)h
+

( 1√
1 + µ2

1

e2

)v
, ñ2 =

( µ2√
1 + µ2

2

e2

)h
−

( 1√
1 + µ2

2

e1

)v
. (7)

Recall, that γ̃i
j|s := g̃(∇̃ẽs ñj , ñi) and in our case we only need to calculate γ̃2

1|s. To do
this we use Kowalski-type formulas from [2], namely

∇̃XhY h = (∇XY )h − 1
2(R(X, Y )ξ)tan, ∇̃XhY tan = (∇XY )tan + 1

2(R(ξ, Y )X)h,

∇̃XtanY h = 1
2(R(ξ,X)Y )h, ∇̃XtanY tan = −g(Y, ξ)Xtan.

Then

∇̃Xh
1 +Xtan

2
(Y h

1 + Y tan
2 ) =

(∇X1Y1 +
1
2
R(ξ, Y2)X1 +

1
2
R(ξ, X2)Y1

)h
+

(
∇X1Y2 − 1

2
R(X1, Y1)ξ − g(Y2, ξ)X2

)tan

Straight forward calculations show that the curvature tensor components are of the
form

e1 e2 e3

R(e1, e2)• −k12e2 k12e1 0

R(e1, e3)• −k13e3 0 k13e1

R(e2, e3)• 0 −k23e3 k23e2

where kij = 1
2(ρi + ρj − ρm) (i 6= j 6= m 6= i) are basic sectional curvatures.

Using this formulas, we obtain easily ∇̃ẽ1 ñ1 = ((∗)e3)tan = 0, ∇̃ẽ2 ñ1 = (∗)eh
3 and

hence γ̃2
1|1 = γ̃2

1|2 = 0. Finaly,

∇̃ẽ3 ñ1 =
1
2

k12√
1 + µ2

1

eh
2 −

1
2

2µ3 − µ1k13√
1 + µ2

1

ev
1

As µ1µ2 = 1, we can simplify

2µ3 − µ1k13√
1 + µ2

1

=
2µ3 − µ1(µ1µ2 + µ2µ3 − µ1µ3)√

1 + µ2
1

=
2µ3 − (µ1 + µ3 − µ2

1µ3)√
1 + µ2

1

=

µ3 + µ2
1µ3 − µ1√

1 + µ2
1

=
µ2µ3 + µ1µ3 − µ2µ3

µ2

√
1 + µ2

1

=
k12√
1 + µ2

2

,

k12√
1 + µ2

1

=
µ2k12√
1 + µ2

2

.
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So, we have

∇̃ẽ3 ñ1 =
1
2
k12ñ2

and hence γ̃2
1|3 = 1

2k12. For the cases of ξ = e1 and ξ = e2 the calculations are similar.

The partial Ricci curvature R̃ic(Ñ) = w2
n∑

i=1
K̃(ẽi, ñ), where ẽi are the vectors of

orthonormal frame tangent to ξ(M), can be calculated by using the formula for the
sectional curvature of T1M . Namely, if X̃ = Xh

1 + Xtan
2 and Ỹ = Y h

1 + Y tan
2 are

orthonormal, then [6]:

K̃(X̃, Ỹ ) =
〈
R(X1, Y1)Y1, X1

〉− 3
4
‖R(X1, Y1)ξ‖2+

1
4
‖R(ξ, Y ′

2)X1 + R(ξ, X ′
2)Y1‖2 + 3

〈
R(X1, Y1)Y ′

2 , X
′
2

〉− 〈
R(ξ, X ′

2)X1, R(ξ, Y ′
2)Y1

〉
+

‖X ′
2‖2‖Y ′

2‖2 − 〈
X ′

2, Y
′
2

〉2 +
〈
(∇X1R)(ξ, Y ′

2)Y1, X1

〉
+

〈
(∇Y1R)(ξ, X ′

2)X1, Y1

〉
, (8)

where X ′
2 = X2− g(X2, ξ)ξ, Y ′

2 = Y2− g(Y2, ξ)ξ, R and ∇ are the curvature tensor and
Riemannian connection of the base manifold (M, g) respectively.

So, to find the partial Ricci curvature of ξ(G), we need the covariant derivatives of
the curvature tensor. One can find them by standard calculations.

Lemma 2.2 Let (e1, e2, e3) be the canonical left-invariant frame on (compact quotient
of ) three-dimensional unimodular Lie group with the left-invariant metric. Then the
covariant derivatives of the curvature tensor are of he form

(∇•R)(e1, e2)e1 (∇•R)(e1, e2)e2 (∇•R)(e1, e2)e3

e1 µ1(ρ3 − ρ2)e3 0 −µ1(ρ3 − ρ2)e1

e2 0 µ2(ρ3 − ρ1)e3 −µ2(ρ3 − ρ1)e2

e3 0 0 0

(∇•R)(e1, e3)e1 (∇•R)(e1, e3)e2 (∇•R)(e1, e3)e3

e1 µ1(ρ3 − ρ2)e2 −µ1(ρ3 − ρ2)e1 0

e2 0 0 0

e3 0 µ3(ρ2 − ρ1)e3 −µ3(ρ2 − ρ1)e2

(∇•R)(e2, e3)e1 (∇•R)(e2, e3)e2 (∇•R)(e2, e3)e3

e1 0 0 0

e2 µ2(ρ3 − ρ1)e2 −µ2(ρ3 − ρ1)e1 0

e3 µ3(ρ2 − ρ1)e3 0 −µ3(ρ2 − ρ1)e1

where ρi are the principal Ricci curvatures and µi are the connection coefficients.
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Now we can calculate the partial Ricci curvature with respect to arbitrary normal vector
field for totally geodesic ξ(G).

Lemma 2.3 Let ξ = em be a totally geodesic unit vector field on (compact quotient of)
three-dimensional unimodular Lie group G with the left-invariant metric. The partial
Ricci curvature of ξ(G) with respect to arbitrary normal vector field Ñ = hiñi + hjñj

(i 6= j 6= m 6= i) is of the form

R̃ic(Ñ) =
1
4
kij(h2

i + h2
j ) +

(
1− ρ2

j

4

)
h2

i +
(
1− ρ2

i

4

)
h2

j

where kij is a basic ei∧ej sectional curvature and ρi are the principal Ricci curvatures.

Proof. We will conduct the proof for ξ = e3, since the other cases are similar. Take
the ξ(G) tangent and normal framing according to (6) and (7). Then the arbitrary
normal vector field Ñ can be expressed by

Ñ =

(
h1µ1√
1 + µ2

1

e1 +
h2µ2√
1 + µ2

2

e2

)h

+

(
− h2√

1 + µ2
2

e1 +
h1√

1 + µ2
1

e2

)v

Observe that if X̃ is of unit length and orthogonal to Ỹ , then |Ỹ |2K̃(X̃, Ỹ ) could be
calculated by (8) assuming that Y1 and Y2 are the components of the non-normalized
vector. Keeping this, put

Y1 =
h1µ1√
1 + µ2

1

e1 +
h2µ2√
1 + µ2

2

e2, Y2 = − h2√
1 + µ2

2

e1 +
h1√

1 + µ2
1

e2.

To calculate K̃( ẽ1, Ñ), put

X1 =
1√

1 + µ2
1

e1 X2 =
−µ1√
1 + µ2

1

e2.

The calculations with MAPLE yield:

〈
R(X1, Y1)Y1, X1

〉
=

µ2
2k12

(1 + µ2
1)(1 + µ2

2)
h2

2

∣∣∣
µ1µ2=1

=
µ2

1µ3 + µ3 − µ1

µ1(1 + µ2
1)2

h2
2,

||R(X1, Y1)ξ||2 = 0,

||R(ξ, Y2)X1 + R(ξ, X2)Y1||2 =
(k13 + µ1µ2k23)2

(1 + µ2
1)(1 + µ2

2)
h2

2

∣∣∣
µ1µ2=1

=
4µ2

1

(1 + µ2
1)2

h2
2,

〈
R(X1, Y1)Y2, X2

〉
= − µ1µ2k12

(1 + µ2
1)(1 + µ2

2)
h2

2

∣∣∣
µ1µ2=1

= −µ1(µ2
1µ3 + µ3 − µ1)
(1 + µ2

1)2
h2

2,

〈
R(ξ, X2)X1, R(ξ, Y2)Y1

〉
= 0,

‖X2‖2‖Y2‖2 − 〈
X2, Y2

〉2 =
µ2

1

(1 + µ2
1)(1 + µ2

2)
h2

2

∣∣∣
µ1µ2=1

=
µ4

1

(1 + µ2
1)2

h2
2,

〈
(∇X1R)(ξ, Y2)Y1, X1

〉
=

ρ3(ρ2 − ρ3)
2(1 + µ2

1)(1 + µ2
2)

h2
2

∣∣∣
ρ3=2,µ1µ2=1

=
2µ2

1(µ1µ3 − 1)
(1 + µ2

1)2
h2

2,

〈
(∇Y1R)(ξ, X2)X1, Y1

〉
= − µ2

2ρ3(ρ1 − ρ3)
2(1 + µ2

1)(1 + µ2
2)

h2
2

∣∣∣
ρ3=2,µ1µ2=1

=
2(µ1 − µ3)
µ1(1 + µ2

1)2
h2

2.
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After substitution into (8), we get

|Ñ |2K̃( ẽ1, Ñ) = (1− 1
2
ρ1)h2

2.

After similar calculations, one can find

|Ñ |2K̃( ẽ2, Ñ) = (1− 1
2
ρ2)h2

1,

|Ñ |2K̃( ẽ3, Ñ) =
1
4
k2

12(h
2
1 + h2

2) +
(ρ2

2
− ρ2

2

4

)
h2

1 +
(ρ1

2
− ρ2

1

4

)
h2

2.

It follows then

R̃ic(Ñ) =
1
4
k2

12(h
2
1 + h2

2) +
(
1− ρ2

2

4

)
h2

1 +
(
1− ρ2

1

4

)
h2

2,

which completes the proof.

The following Lemma is the principal one.

Lemma 2.4 Let ξ = em be a totaly geodesic left-invariant unit vector field on three-
dimensional non-flat compact quotient of unimodular Lie group with the left-invariant
metric. Then the integrand in the second volume variation formula (3) can be reduced
to

W (h, h) :=
[ei(hi)2

1 + µ2
i

− 2kij

λm
ei(hi)ej(hj) +

ej(hj)2

1 + µ2
j

+

ei(hj)2

1 + µ2
i

+
2kij

λm
ei(hj)ej(hi)+

ej(hi)2

1 + µ2
j

+em(hi)2+em(hj)2+
(ρ2

j

4
−1

)
h2

i +
(ρ2

i

4
−1

)
h2

j

]
|λm|,

(9)

where i 6= j 6= m 6= i, ρi and ρj are the principal Ricci curvatures, kij are the basic
sectional curvatures of G and hi are the variation functions.

Proof. We will conduct the calculations for the case m = 3. First of all observe, that
ξ = em is the unit Ricci eigenvector of eigenvalue ρ3 = 2, which means that µ1µ2 = 1
and hence

L = det(I + At
ξAξ) = 1 + µ2

1 + µ2
2 + µ2

1µ
2
2 = 2 + µ2

1 + µ2
2 = (µ1 + µ2)2 = λ2

3.

Therefore, dV olξ is a constant multiple of dV , namely dV olξ = |λ3|dV . Take the ξ(G)
tangent and normal framing according to (6) and (7). Put Ñ = h1ñ1 + h2ñ2. To
calculate |∇̃⊥ẽi

Ñ |2, observe that

∇̃⊥ẽi
Ñ = 〈〈∇̃ẽiÑ , ñ1〉〉 ñ1 + 〈〈∇̃ẽiÑ , ñ2〉〉 ñ2 = ẽi(h1)ñ1 + ẽi(h2)ñ2+

h2〈〈∇̃ẽi ñ2, ñ1〉〉 ñ1 + h1〈〈∇̃ẽi ñ1, ñ2〉〉 ñ2 = ẽi(h1)ñ1 + ẽi(h2)ñ2 + h2γ̃
1
2|iñ1 + h1γ̃

2
1|iñ2

By Lemma 2.1, we have

∇̃⊥ẽ1
Ñ = ẽ1(h1)ñ1 + ẽ1(h2)ñ2, ∇̃⊥ẽ2

Ñ = ẽ2(h1)ñ1 + ẽ2(h2)ñ2,

10



∇̃⊥ẽ3
Ñ =

(
ẽ3(h1)− 1

2
k12h2

)
ñ1 +

(
ẽ3(h2) +

1
2
k12h1

)
ñ2.

Therefore
3∑

i=1

||∇̃⊥ẽi
Ñ ||2 =

3∑

i=1

(
ẽi(h1)2 + ẽi(h2)2

)
+ k12

(
ẽ3(h2)h1 − ẽ3(h1)h2

)
+

1
4
k2

12(h
2
1 + h2

2).

Since hi are the functions on the base manifold, we have ẽα(hσ) = 1√
1+µ2

α

eα(hσ) and

ẽ3(hσ) = e3(hσ), where (α, σ = 1, 2) . Hence,

3∑

i=1

||∇̃⊥ẽi
Ñ ||2 =

2∑

α=1

1
1 + µ2

α

(
eα(h1)2 + eα(h2)2

)
+

e3(h1)2 + e3(h2)2 + k12

(
e3(h2)h1 − e3(h1)h2

)
+

1
4
k2

12(h
2
1 + h2

2).

Since G is compact, by the divergence theorem
∫

G

div(X)dV = 0

for any vector field X. For X = h1h2e3, we have

div(h1h2e3) = g(grad(h1h2), e3) = e3(h1)h2 + e3(h2)h1

and hence ∫

G

(
e3(h2)h1 − e3(h1)h2

)
dV = 2

∫

G

e3(h2)h1dV.

Analyzing the Table in the Theorem 2.1 one can observe, that all cases (except E(2)
and T 3 with flat metric) the totaly geodesic ei corresponds to λi 6= 0. Therefore, we
can continue as

2
∫

G/Γ

e3(h2)h1dV =
2
λ3

∫

G

[e1, e2](h2)h1dV.

Expand

h1[e1, e2](h2) = h1e1(e2(h2))− h1e2(e1(h2)) =
e1(h1e2(h2))− e1(h1)e2(h2)− e2(h1e1(h2)) + e2(h1)e1(h2).

Since G is compact and boundaryless, after applying the Stokes formula we get
∫

G

(
e3(h2)h1 − e3(h1)h2

)
dV =

2
λ3

∫

G

(
e2(h1)e1(h2)− e1(h1)e2(h2)

)
dV.

Hence,

∫

ξ(G)

3∑

i=1

||∇̃⊥ẽi
Ñ ||2dV olξ =

∫

G

(e1(h1)2

1 + µ2
1

− 2k12

λ3
e1(h1)e2(h2) +

e2(h2)2

1 + µ2
2

+

e1(h2)2

1 + µ2
1

+
2k12

λ3
e1(h2)e2(h1) +

e2(h1)2

1 + µ2
2

+ e3(h1)2 + e3(h2)2 +
1
4
k2

12(h
2
1 + h2

2)
)
|λ3|dV

11



Taking into account the result of Lemma 2.3, we obtain

δ2V olξ =
∫

G

(e1(h1)2

1 + µ2
1

− 2k12

λ3
e1(h1)e2(h2) +

e2(h2)2

1 + µ2
2

+

e1(h2)2

1 + µ2
1

+
2k12

λ3
e1(h2)e2(h1)+

e2(h1)2

1 + µ2
2

+e3(h1)2+e3(h2)2+
(ρ2

2

4
−1

)
h2

1+
(ρ2

1

4
−1

)
h2

2

)
|λ3|dV.

The other cases can be treated in a similar way.

Remark 1 It is worthwhile to mention that if µ1 = µ2 = µ3 = 1, then ρ1 = ρ2 = ρ3 =
2 and the integrand (9) up to multiple 2 is the same as in [11] obtained for the Hopf
vector field on S3(1). In this case we deal with SO(3) of constant curvature +1 which
is isometric to S3(1). The left-invariant unit vector field corresponds the Hopf vector
field on S3(1). So we can conclude that in this case the second variation of volume with
respect to the field variation is equal to a half of classical second variation of volume.
Therefore, the Hopf vector field is stable with respect to both types of variations. The
stability the Hopf vector field with respect to the field variations was proved in [11] and
in [18] for the classical treatment.

From Lemma 2.4 we immediately conclude the following.

Theorem 2.2 Let ξ be left-invariant unit vector field on compact quotient of non-flat
three-dimensional unimodular Lie group G with left-invariant metric. Then ξ(Γ\G) is
stable totally geodesic submanifold in T1(Γ\G) if and only if G = SO(3) of constant
curvature +1 and ξ is arbitrary left-invariant.

Proof. Let ξ = em be totally geodesic. Then ρm = 2 and to be left-invariant stable,
the other Ricci curvatures must satisfy

|ρi| ≥ 2 or,equivalently, |µmµj | ≥ 1

and
|ρj | ≥ 2 or,equivalently, |µiµm| ≥ 1.

To be generally stable, both quadratic expressions involving derivatives must be posi-
tively semi-definite. The latter condition is equivalent to

k2
ij

λ2
m

≤ 1
(1 + µ2

i )(1 + µ2
j )

.

Since ρm = 2µiµj = 2, we have (1 + µ2
i )(1 + µ2

j ) = (2 + µ2
i + µ2

j ) = (µi + µj)2 = λ2
m. As

a result, |kij | ≤ 1. Observe that kij = µiµm +µmµj−1 and hence the equality |kij | ≤ 1
is equivalent to

0 ≤ µm(µi + µj) ≤ 2 or 0 ≤ µm

µi
(1 + µ2

i ) ≤ 2 or 0 ≤ µm

µi
≤ 2

1 + µ2
i

.
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Evidently, all connection coefficients have to be of the same sign. Therefore, the classical
stability take place if

µmµi ≥ 1,
µm

µi
≥ 1, 0 ≤ µm

µi
≤ 2

1 + µ2
i

.

The system is compatible if and only if µ1 = µ2 = µ3 = ±1. Taking into account the
signs of λi, we obtain a unique solution µ1 = µ2 = µ3 = 1 which means that the base
manifold is SO(3) of constant curvature +1 and hence ξ is arbitrary left-invariant.

If the system is inconsistent, then the totally geodesic submanifold ξ(G) is unstable.
Indeed, if say ρi < 2, then in the case of compact quotient one can take hi = 0, hm = 0
and hj = const 6= 0 and we get W (h, h) < 0 over whole compact quotient. If ρi ≥ 2 and
ρj ≥ 2 but |kij | > 1, then both quadratic expressions that involve derivatives of hi and
hj in W (h, h) are not positively semi-definite. By taking h3 = 0 and h1, h2 sufficiently
small with derivatives making the quadratic expressions negative, we obtain negative
W (h, h) at least over some domain F ⊂ Γ\G.

The proof of Lemma 2.4 essentially uses non-flatness of the group. If the group is
flat, then the second classical variation of volume for the unit vector field with totally
geodesic image is much simpler.

Theorem 2.3 Let ξ is a unit vector field on compact quotient of flat three-dimensional
unimodular Lie group G with the left-invariant metric. Then

• if G = E(2) and ξ is a parallel unit vector field on E(2), then ξ(Γ\G) is stable
totally geodesic submanifold;

• if G = E(2) and ξ is in integrable distribution orthogonal to the parallel vector
field on E(2), then ξ(Γ\G) is unstable totally geodesic submanifold;

• if G = R ⊕ R ⊕ R and is arbitrary left-invariant, then ξ(T 3) is stable totally
geodesic submanifold.

Proof. We have flat E(2) if λ1 = λ2 = a > λ3 = 0. In this case µ1 = 0, µ2 = 0, µ3 = a
and ρ1 = ρ2 = ρ3 = 0. The field ξ = e3 is the field of unit normals of the integrable
orthogonal distribution ξ⊥. In this case R̃ic(Ñ) = 0 and we have ξ(G) stable totally
geodesic submanifold in T1G.

As concerns the field ξ = cos te1 + sin te2, rotating the frame in e1 ∧ e2 plane we
may always put ξ = e1 without loss of generality. Then

Aξ =




0 0 0
0 0 −a
0 0 0


 , At

ξ =




0 0 0
0 0 0
0 −a 0


 .

The tangent frame consists of

ẽ1 = eh
1 , ẽ2 = eh

2 , ẽ3 =
1√

1 + a2
(eh

3 + aev
2).
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The normal frame on ξ(G) consists of

ñ2 =
1√

1 + a2
(−aeh

3 + ev
2), ñ3 = ev

3.

For the field of normal variation Ñ = h2ñ2 + h3ñ3, we have

R̃ic(Ñ) =
a2

1 + a2
h2

3.

The normal connection of ξ(G) is flat and hence, by choosing the variation with constant
h1 and h2, we get

δ2V olξ = − a2

1 + a2
h2

3V ol(G),

which means that ξ(G) is ustable totally geodesic submanifold in T1G.
In the case of R⊕R⊕R the compact quotient is flat torus T 3. Each left-invariant

field is parallel and therefore, the ξ(T 3) is stable totally geodesic submanifold.

Considering the field of normal variation of ξ(G) for ξ = e3, namely,

Ñ =

(
h1µ1√
1 + µ2

1

e1 +
h2µ2√
1 + µ2

2

e2

)h

+

(
− h2√

1 + µ2
2

e1 +
h1√

1 + µ2
1

e2

)v

one can observe that this field generates two variations of the field ξ in a meaning of
[11], namely

Z1 = π∗(Ñ) =
h1µ1√
1 + µ2

1

e1 +
h2µ2√
1 + µ2

2

e2, Z2 = K(Ñ) = − h2√
1 + µ2

2

e1 +
h1√

1 + µ2
1

e2.

If h1 and h2 are non-constant, then these variations exclude ξ(G) from the class of
submanifolds in T1G, generated by the left invariant unit vector fields. This fact justifies
the following definition.

Definition 2.1 Let ξ be left-invariant unit vector field on Lie group G with the left-
invariant metric. The normal variation vector field Ñ on ξ(G) ⊂ T1G is called left-
invariant, if Z1 = π∗(Ñ) Z2 = K(Ñ) are left-invariant vector fields on G.

If we restrict the variations to the left-invariant ones, we obtain a wider class of
classically stable totally geodesic unit vector fields.

Theorem 2.4 Let G be three-dimensional unimodular Lie group with the left-invariant
metric. Let (e1, e2, e3) is the canonical frame of its Lie algebra. Set for definiteness
λ1 ≥ λ2 ≥ λ3. Then stable or unstable with respect to left-invariant variations totally
geodesic submanifolds generated by unit left-invariant vector field ξ on compact quotient
of G are the following.

14



G or Γ\G Ricci principal curvatures ξ left-invariant
stability or
instability

SO(3) ρ1 = ρ2 = ρ3 = 2 S stable
ρ1 = ρ2 > ρ3 = 2 ±e3 stable
ρ1 = ρ2 = 2 > ρ3 cos t e1 + sin t e2 unstable
ρ1 = 2 > ρ2 = ρ3 ±e1 unstable
ρ1 > ρ2 = ρ3 = 2 cos t e2 + sin t e3 stable
ρ1 = 2 > ρ2 > ρ3 ±e1 unstable
ρ1 > ρ2 = 2 > ρ3 ±e2 unstable
ρ1 > ρ2 > ρ3 = 2 ±e3 stable

Γ\SL(2, R) ρ3 = 2 > −2 > ρ2 > ρ1 ±e3 unstable
ρ1 = 2 > −2 > ρ2 > ρ3 ±e1 stable

Γ\E(2) ρ1 = ρ2 = ρ3 = 0, ±e3, stable
µ1 = µ2 = 0, µ3 > 0 cos t e1 + sin t e2 unstable
ρ1 = 2 > ρ3 > ρ2 = −2 ±e1 unstable

Γ\E(1, 1) ρ3 = 2 > ρ1 = −2 > ρ2 ±e3 stable
ρ1 = 2 > ρ2 = −2 > ρ3 ±e1 stable

Γ \Nil3 ρ1 = 2 > ρ2 = ρ3 = −2 ±e1 stable

T 3 ρ1 = ρ2 = ρ3 = 0, S stable
µ1 = µ2 = µ3 = 0

where S stands for arbitrary left-invariant unit vector field of the form ξ = cos t cos s e1+
cos t sin s e2 + sin t e3 with fixed parameters t and s.

Proof. If one take the left-invariant variations, then (9) takes the form

W (h, h) = (
ρ2

j

4
− 1)h2

i + (
ρ2

i

4
− 1)h2

j

end hence if
min(|ρi|, |ρj |) ≥ ρm = 2 (i 6= j 6= m 6= i)

then ξ = em generates stable totally geodesic subnanifold. If ρi < 2 or ρj < 2 then
choosing hj 6= 0 or hi 6= 0 we get W (h, h) < 0 which means that the submanifold ξ(G)
is unstable.

Below, we check all unimodular three-dimensional Lie groups with left-invariant
metric and corresponding totally geodesic unit vector fields on left-invariant stability
or instability.

• The group SO(3).

1. λ1 = λ2 = λ3 = 2. Here ξ is arbitrary unit left-invariant and ξ(G) is classically
stable totally geodesic submanifold in T1G by Theorem 2.2.

2. Put λ1 = λ2 = 2 + δ, λ3 = 2. Here ξ = e3. Since

ρ1 = 2(1 + δ) = ρ2 = 2(1 + δ) > ρ3 = 2,

ξ(G) is left-invariant stable totally geodesic submanifold in T1G.
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3. Put λ1 = λ2 = 2 + ε, λ3 = 2 + ε−
√

ε(ε + 4) > 0. Rotating the frame in e1 ∧ e2

plane, we can always put ξ = e1.

The connection coefficients are

µ1 = 1 +
ε−

√
ε(ε + 4)
2

, µ2 = 1 +
ε−

√
ε(ε + 4)
2

, µ3 = 1 +
ε +

√
ε(ε + 4)
2

.

The principal Ricci curvatures are

ρ1 = 2, ρ2 = 2, ρ3 =
1
2

(
2 + ε−

√
ε(ε + 4)

)2
.

We have ρ1 = ρ2 = 2 > ρ3 > 0 and W (h, h) = (ρ2
3/4 − 1)h2

2 < 0 for h2 6= 0.
Hence, ξ(G) is unstable totally geodesic submanifold in T1G.

4. Put λ1 = 2, λ2 = λ3 = 2− ε, 0 < ε < 2. Here ξ = e1. The connection coefficients
and the Ricci principal curvatures are

µ1 = 1− ε, µ2 = 1, µ3 = 1; ρ1 = 2, ρ2 = 2(1− ε), ρ3 = 2(1− ε).

We have ρ1 = 2 > ρ2 = ρ3 > −2 and hence ρ2
2 = ρ2

3 < 4. Therefore, ξ(G) is
unstable totally geodesic submanifold in T1G.

5. Put λ1 = ε +
√

4 + ε2, λ2 =
√

4 + ε2, λ3 =
√

4 + ε2. In this case ξ = cos te2 +
sin te3. Rotating the frame, we may put ξ = e3. Then

µ1 =
√

ε2 + 4− ε

2
, µ2 = µ3 =

√
ε2 + 4 + ε

2
= 1/µ1,

The principal Ricci curvatures are

ρ1 = 2 + ε(
√

ε2 + 4 + ε) > ρ2 = ρ3 = 2

and hence ξ(G) is left-invariant stable totally geodesic submanifold in T1G

6. λ1 > λ2 > λ3 > 0, λ2
m−(λi−λk)2 = 4. Denote λ2−λ3 = δ > 0, λ1−λ2 = ε > 0.

Then λ1 − λ3 = ε + δ. Here we have 3 distinct cases.

(i) λ2
1 = (λ2 − λ3)2 + 4, ξ = e1. Then

λ1 =
√

4 + δ2, λ2 =
√

4 + δ2 − ε > 0, λ3 =
√

4 + δ2 − ε− δ > 0.

The connection coefficients are

µ1 =
√

δ2 + 4− δ

2
− ε, µ2 =

√
δ2 + 4− δ

2
, µ3 =

√
δ2 + 4 + δ

2
.

The principal Ricci curvatures are

ρ1 = 2 > ρ2 = 2− ε(
√

δ2 + 4 + δ) > ρ3 = 2− (ε + δ)(
√

δ2 + 4− δ) > −2.

and we obtain unstable totally geodesic submanifold in in T1G.
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(ii) λ2
2 = (λ1 − λ3)2 + 4, ξ = e2. Then

λ1 =
√

4 + (ε + δ)2 + ε, λ2 =
√

4 + (ε + δ)2, λ3 =
√

4 + (ε + δ)2 − δ > 0

The connection coefficients are

µ1 =

√
(ε + δ)2 + 4− (ε + δ)

2
, µ2 =

√
(ε + δ)2 + 4 + ε− δ

2
,

µ3 =

√
(ε + δ)2 + 4 + ε + δ

2
The principal Ricci curvatures are

ρ1 = 2 + ε(
√

(ε + δ)2 + 4 + ε + δ), ρ2 = 2, ρ3 = 2− δ
(√

(ε + δ)2 + 4− (ε + δ)
)
.

Here ρ1 > ρ2 = 2 > ρ3 > −2 and we obtain unstable totally geodesic submani-
fold in in T1G.

(iii) λ2
3 = (λ1 − λ2)2 + 4, ξ = e3. Then

λ1 =
√

4 + ε2 + ε + δ, λ2 =
√

4 + ε2 + δ, λ3 =
√

4 + ε2.

The connection coefficients are

µ1 =
√

ε2 + 4− ε

2
, µ2 =

√
ε2 + 4 + ε

2
= 1/µ1, µ3 =

√
ε2 + 4 + ε

2
+ δ

The principal Ricci curvatures are

ρ1 = 2 + (ε + δ)(
√

ε2 + 4 + ε) > ρ2 = 2 + δ(
√

ε2 + 4− ε) > ρ3 = 2

and we obtain left-invariant stable totally geodesic submanifold in in T1G.

• The group SL(2, R). Here we have ξ = e3 or ξ = e1.

1. In the case ξ = e3 we have λ2
3 − (λ1 − λ2)2 = 4. Put λ1 − λ2 = ε > 0. Then

λ3 = −√4 + ε2, λ2 = a > 0, λ1 = a + ε. The connection coefficients are

µ1 = −
√

ε2 + 4 + ε

2
, µ2 = −

√
ε2 + 4− ε

2
= 1/µ1, µ3 = a +

√
ε2 + 4 + ε

2
.

The principal Ricci curvatures are

ρ1 = −2− a(
√

ε2 + 4− ε), ρ2 = −2− (a + ε)(
√

4 + ε2 + ε), ρ3 = 2.

Observe that ρ3 = 2 > ρ1 > ρ2, but ρ2 < ρ1 < −2. Therefore, ρ2
2 > ρ2

1 > 4 and
hence (ρ2

2/4 − 1)h2
3 + (ρ2

3/4 − 1)h2
2 > 0. So we have ξ(G) left-invariant stable

totally geodesic submanifold in in T1G.
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2. In the case ξ = e1 we have λ2
1−(λ2−λ3)2 = 4. Put λ3 = −a (a > 0), λ2 = λ3+ε =

ε− a > 0, λ1 =
√

4 + ε2. (Observe, that λ1 − λ2 =
√

ε2 + 4− ε + a > −λ3 = a).
Besides, λ1 ≥ λ2. Therefore

√
ε2 + 4 ≥ ε− a > 0.

The connection coefficients are

µ1 = −a−
√

ε2 + 4− ε

2
, µ2 =

√
ε2 + 4− ε

2
, µ3 =

√
ε2 + 4 + ε

2
= 1/µ2.

The principal Ricci curvatures are

ρ1 = 2, ρ2 = −2− a(
√

ε2 + 4 + ε), ρ3 = −2 + (ε− a)(
√

ε2 + 4− ε).

Observe, that ρ2 < −2 but −2 < ρ3 < 2. Indeed, ε− a ≤ √
ε2 + 4 and hence

(ε− a)(
√

ε2 + 4− ε) ≤
√

ε2 + 4(
√

ε2 + 4− ε) = 4− ε(
√

ε2 + 4− ε) < 4.

Therefore the ξ(G) is unstable totally geodesic submanifold in in T1G.

• The group E(2). The flat case was considered in Theorem 2.3. Consider the case
λ2

1 − λ2
2 = 4, λ1 > 0, λ2 > 0 and ξ = e1. Put λ1 =

√
4 + a2, λ2 = a > 0, λ3 = 0. Then

µ1 = −
√

4 + a2 − a

2
, µ2 =

√
4 + a2 − a

2
, µ3 =

√
4 + a2 + a

2
= 1/µ2

and
ρ1 = 2, ρ2 = −2, ρ3 = −2 + a(

√
4 + a2 − a).

So we have
ρ1 = 2 > ρ3 > ρ2 = −2, ρ2

3 < 4

and hence (ρ2
3/4 − 1)h2

2 < 0 for h2 6= 0. Therefore, ξ(G) is unstable totally geodesic
submanifold in T1G.

• The group E(1, 1). Here again we have 2 options.

1. Consider λ2
3 − λ2

1 = 4, λ1 > 0, λ2 = 0, λ3 < 0. The field here is ξ = e3. Put
λ1 = a, λ3 = −√a2 + 4. Then

µ1 = −a +
√

a2 + 4
2

, µ3 =
a +

√
a2 + 4
2

, µ2 =
a−√a2 + 4

2
= 1/µ1

and the principal Ricci curvatures are

ρ1 = −2, ρ3 = 2, ρ2 = −1
2
(a +

√
a2 + 4)2 = −2− a(a +

√
4 + a2).

Evidently, ρ3 = 2 > ρ1 = −2 > ρ2 but ρ2
2 > ρ2

1 = 4. Therefore,

(ρ2
2/4− 1)h2

1 ≥ 0

and we have left-invariant stable totally geodesic submanifold in T1G.
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2. Consider λ2
1 − λ2

3 = 4, λ1 > 0, λ2 = 0, λ3 < 0. In this case ξ = e1. Put
λ1 =

√
a2 + 4, λ3 = −a < 0. Then

µ1 = −a +
√

a2 + 4
2

, µ2 =
√

a2 + 4− a

2
, µ3 =

√
a2 + 4 + a

2
= 1/µ2

and the principal Ricci curvatures are

ρ1 = 2, ρ2 = −1
2
(a +

√
a2 + 4)2 = −2− a(a +

√
a2 + 4), ρ3 = −2.

Observe, that ρ1 = 2 > ρ3 = −2 > ρ2 but ρ2
2 > ρ2

3 = 4. Therefore,

(ρ2
2/4− 1)h2

1 ≥ 0

and we have left-invariant stable totally geodesic submanifold in T1G.

• The group Nil3. In this case λ1 = 2, λ2 = 0, λ3 = 0 and the field ξ = e1. It is
easy to calculate

µ1 = −1, µ2 = 1, µ3 = 1 = 1/µ2,

ρ1 = 2, ρ2 = −2, ρ3 = −2

and observe, that ρ1 = 2 > ρ2 = ρ3 = −2. Therefore, we have ξ(G) left-invariant
stable totally geodesic submanifold in T1G.

• The flat torus T 3 was considered in Theorem 2.3.

Remark 2 The results of Theorem 2.4 that concern instability correlate with insta-
bility results from [14], where the the second variation of volume was calculated with
respect to the field variations and the variation field was chosen with constant variation
functions, i.e. left-invariant in our terminology.

Summarizing the results of the Theorem 2.4, we can observe that ξ(G) is stable
with respect to left-invariant variations totally geodesic unit vector field if and only if ξ
is the unit eigenvector of the Ricci operator which corresponds to minimal in absolute
value principal Ricci curvature ρ = 2.

3 Non-unimodular groups.

If G is three-dimensional non-unimodular Lie group with the left-invariant metric, then
there is the left-invariant orthonormal frame (e1, e2, e3) such that

[e1, e2] = α e2 + β e3, [e1, e3] = −β e2 + δ e3, [e2, e3] = 0,

where α, β and δ ar all constant satisfying α > δ, α ≥ −δ. Let us call this frame by
canonical one.

The non-unimodular group is not compact and does not admit a compact factor
[15]. That is why one should consider the formula (3) over each domain F ⊂ G with
compact closeur. We say that the ξ(G) is unstable minimal/totally geodesic unit vector
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field if there is a domain F ⊂ G with compact closeur such that the second variation
δ2V olξ(F ) < 0.

The author described the groups which admit the totally geodesic left-invariant
vector fields and the field themselves [21]. Here we complement the theorem with
stability property as follows.

Theorem 3.1 Let G be three-dimensional non-unimodular Lie group with the left-
invariant metric Let ξ be left-invariant unit vector field on G and (e1, e2, e3) the canon-
ical ortonormal frame of its Lie algebra. Suppose ξ(G) ⊂ T1G is totally geodesic. Then

• β = δ = 0 and ξ = e3 is a parallel unit vector field; the ξ(G) is stable totally
geodesic submanifold in T1G;

• αδ = −1, β = ±1 and ξ is of the form

ξ =
β√

1 + α2
e2 +

α√
1 + α2

e3;

the ξ(G) is unstable totally geodesic submanifold in T1G;.

Proof. As it was proved in [21], if β = δ = 0, then ξ = e3 is a field of unit normals
of some totally geodesic 2-foliation on G and Aξ = −∇ξ = 0. Hence, in (8) all the
terms with ξ turn into zero. The (1) implies that ξ(G) is horizontal while its field of
normals is vertical. Therefore, X2 = K(X̃) = 0 and Z1 = π∗(Ñ) = 0. The (8) implies

R̃ic(Ñ) = 0.

Therefore, W (h, h) ≥ 0 and hence ξ(G) is stable.
Consider the case

αδ = −1, β = ±1, ξ =
β√

1 + α2
e2 +

α√
1 + α2

e3.

Observe, that the conditions α > δ, α ≥ −δ and αδ = −1 imply α ≥ 1. For such a
vector field we have

x1 = 0, x2 =
β√

1 + α2
, x3 =

α√
1 + α2

. (10)

The table of covariant derivatives is

∇ e1 e2 e3

e1 0 β e3 −β e2

e2 −α e2 α e1 0

e3
1
α e3 0 − 1

α e1

.

Then

Aξ =




0 −α x2
1
α x3

β x3 0 0

−β x2 0 0


 , At

ξ =




0 β x3 −β x2

−α x2 0 0
1
α x3 0 0



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and

At
ξAξ =




1 0 0

0 α 2

1+α 2
−α β
1+α 2

0 −α β
1+α 2

1
1+α 2


 .

Therefore, the singular values of Aξ are 0 and 1. The corresponding singular frames
are

s0 = ξ, s1 = e1, s2 = −α β√
1+α 2

e2 + 1√
1+α 2

e3;

f1 = Aξ(s1) = βα√
1+α 2

e2 − 1√
1+α 2

e3, f2 = Aξ(s2) = e1.

Hence, the tangent and normal orthonormal framing of ξ(G) is given by (2) as follows

ẽ0 = ξh,

ẽ1 = ξ∗(s1)
|ξ∗(s1)| = 1√

2
eh
1 − 1√

2

(
α β√
1+α 2

e2 − 1√
1+α 2

e3

)v
,

ẽ2 = ξ∗(s2)
|ξ∗(s2)| = 1√

2

(
−α β√
1+α 2

e2 + 1√
1+α 2

e3

)h
− 1√

2
ev
1,

ñ1 = ν(f1)
|ν(f1)| = 1√

2
eh
1 + 1√

2

(
α β√
1+α 2

e2 − 1√
1+α 2

e3

)v
,

ñ2 = ν(f2)
|ν(f2)| = 1√

2

(
−α β√
1+α 2

e2 + 1√
1+α 2

e3

)h
+ 1√

2
ev
1.

To calculate the partial Ricci curvature for ξ(G) by (8), we need the components of the
Riemannian tensor of G with respect to the canonical frame [21].

e1 e2 e3

R(e1, e2)• α 2e2 − β(α − δ )e3 −α 2e1 β(α − δ )e1

R(e1, e3)• −β(α − δ )e2 + δ 2e3 β(α − δ )e1 −δ 2e1

R(e2, e3)• 0 α δ e3 −α δ e2

.

The derivatives of the curvature tensor need routine calculations which can be con-
ducted with MAPLE.

(∇•R)(e1, e2)e1 (∇•R)(e1, e2)e2 (∇•R)(e1, e2)e3

e1 2β2(α − δ )e2 + β(α 2 − δ 2)e3 −2β2(α − δ )e1 −β(α 2 − δ 2)e1

e2 0 βα (α − δ )e3 −βα (α − δ )e2

e3 0 α δ (α − δ )e3 −α δ (α − δ )e2

;

(∇•R)(e1, e3)e1 (∇•R)(e1, e3)e2 (∇•R)(e1, e3)e3

e1 β(α 2 − δ 2)e2 − β2(α − δ )e3 −β(α 2 − δ 2)e1 2β2(α − δ )e1

e2 0 α δ (α − δ )e3 −α δ (α − δ )e2

e3 0 −βδ (α − δ )e3 βδ (α − δ )e2

;
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(∇•R)(e2, e3)e1 (∇•R)(e2, e3)e2 (∇•R)(e2, e3)e3

e1 0 0 0

e2 α β(α − δ )e2 + α δ (α − δ )e3 −α β(α − δ )e1 −α δ (α − δ )e1

e3 α δ (α − δ )e2 − βδ (α − δ )e3 −α δ (α − δ )e1 βδ (α − δ )e1

.

Take now the field of normal variation Ñ = h1ñ1 + h2ñ2. To calculate K(ẽ1, Ñ), put

X1 =
1√
2
e1, X2 = − 1√

2

( α β√
1 + α 2

e2 − 1√
1 + α 2

e3

)
,

Y1 = π∗(Ñ) =
1√
2

(
h1e1 + h2(− α β√

1 + α 2
e2 +

1√
1 + α 2

e3)
)
,

Y2 = K(Ñ) =
1√
2

(
h2e1 + h1(

α β√
1 + α 2

e2 − 1√
1 + α 2

e3)
)
.

and apply (8). The MAPLE calculations yield

〈
R(X1, Y1)Y1, X1

〉
= −1

4
α 4 + α 2 + 1

α 2
h2

2, ||R(X1, Y1)ξ||2 = 0,

||R(ξ, Y2)X1 + R(ξ, X2)Y1||2 =
α 6 − α 4 + 3α 2 + 1

α 2(1 + α 2)
h2

2,

‖X2‖2‖Y2‖2 − 〈
X2, Y2

〉2 = 1
4h2

2,

〈
R(X1, Y1)Y2, X2

〉
=

1
4

α 4 + α 2 + 1
α 2

h2
2,

〈
R(ξ, X2)X1, R(ξ, Y2)Y1

〉
= 0,

〈
(∇X1R)(ξ, Y2)Y1, X1

〉
= −1

4
α 6 − α 4 + 5α 2 − 1

α 2(1 + α 2)
h2

2,

〈
(∇Y1R)(ξ, X2)X1, Y1

〉
= −1

4
α 6 + 10α 4 + 4α 2 + 7

α 2(1 + α 2)
h2

2.

After substitution into (8) and the MAPLE algebraic transformations we get

K̃( ẽ1, Ñ) =
1
4

α 6 + 10α 4 + 4α 2 + 7
α 2(1 + α 2)

h2
2.

In a similar way,

K̃( ẽ2, Ñ) =
1
4

5α 8 − α 6 + 3α 4 + 13α 2 − 8
α 2(1 + α 2)2

h2
1 +

α 8 + 2α 4 + 1
α 2(1 + α 2)2

h2
2,

K̃( ẽ0, Ñ) =
1
4

α 4 + 14α 2 − 11
(1 + α 2)2

h2
1 −

1
4

3α 4 + 2α 2 − 9
(1 + α 2)2

h2
2.

As a result, the partial Ricci curvature of ξ(G) obtains the form

R̃ic(Ñ) =
1
4

5α 8 + 17α 4 + 2α 2 − 8
α 2(1 + α 2)2

h2
1 +

1
4

5α 8 + 8α 6 + 20α 4 + 20α 2 + 11
α 2(1 + α 2)2

h2
2.
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In this case we can not consider the left-invariant variations because of the boundary
conditions. Nevertheless, one can consider the left-invariant variation over a subdomain
F1 ⊂ F such that mes(F̄ \ F1) < ε for however small ε. If the second left-invariant
variation over F1 is negative and bounded away from zero, then by taking F1 sufficiently
large we always can make δ2V olξ(F ) < 0.

If the variation field Ñ is left-invariant, then

2∑

i=0

||∇̃⊥ẽi
Ñ ||2 =

( 2∑

i=0

(γ̃2
1i)

2
)
(h2

1 + h2
2),

where γ̃2
1i = g̃(∇̃ẽi ñ1, ñ2) are the coefficients of the ξ(G) normal bundle connection with

respect to the chosen frame.
Calculating, we get

∇̃ẽ0 ñ1 =
3
4

√
2√

1 + α2

(
βαe2 + e3

)h
+

√
2

1 + α2
ev
1, ∇̃ẽ1 ñ1 = 0,

∇̃ẽ2 ñ1 =
1
2

1√
1 + α2

(
β(2α2 − 1)e2 − αe3

)h
− 1

2
α4 + α2 − 2
α(1 + α2)2

ev
1.

Now one can easily find

γ̃2
10 =

α 2 + 2
1 + α 2

, γ̃2
11 = 0, γ̃2

12 = −1
4

√
2(3α 2 − 2)

α
.

After substitution and MAPLE algebraic transformations, the left-invariant part of
integrand in (3) takes the form

W (h, h) = −1
8

α 8 − 14α 6 + 13α 4 − 24α 2 − 20
α 2(1 + α 2)2

h2
1−

1
8

α 8 + 2α 6 + 19α 4 + 12α 2 + 18
α 2(1 + α 2)2

h2
2.

The factor at h2 is always negative and hence the submanifold ξ(G) is unstable. The
proof is complete.

Closing observation. Analyzing the Remarks 1 and 2 one can conjecture that if
the horizontal and vertical projections of classical normal variation vector field are in ξ⊥,
then the classical stability or instability of minimal (or totally geodesic) submanifold
ξ(M) ⊂ T1M is equivalent to stability or instability of the unit vector field in the
meaning of [11].
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