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We consider the submanifolds in the unit tangent bundle of the pseudo-
Riemannian manifold generated by the unit vector fields on the base. We
have found the second fundamental form of this type of submanifolds with
respect to the normal vector field of a special kind. We have derived the
equations on totally geodesic non-isotropic unit vector field. We have found
all the two-dimensional pseudo-Riemannian manifolds which admit non-
isotropic totally geodesic unit vector fields as well as the fields.

Amvmonberkuit O.J1. IimkoM reoze3myvHi BEKTOPHI MOJIs Ha TICEBJO-
pPUMaHOBOMY MHOTOBHII. B po0oTi po3risifaroThbCsl ITiAMHOINOBUIN Y
JOTUIHOMY PO3IIAPYBAHHI TCEBJIO-PUMAHOBOTO MHOTOBUTY, IO MOPOIXKEH1
BEKTOPHUMHU TIOJISIME Ha 6a30BOMY MHOTOBHII. 3HANIEHO BUpa3 IJId APyrol
dyHIaAMEHTAIBHOT POPMH TAKOTO MHOTOBWIY BiHOCHO TIOJISI HOpMAJIEi
CIIETiaJIbIoOro  BULY. SHaiijleHO pIBHAHHY Ha IUIKOM TI'€0JIe3UYHICTh
HEI30TPOIIHOI0 OJUHUYHOIO BEKTOPHOIO MOJsl. J3HaiijeHo BCl ABOBUMIpHI
MHOT'OBUJTH, 110 JIO3BOJISIIOTH IIJIKOM I'e0/Ie3UYHI Hei30TPOITHI BEKTOPHI 110/,
a TaKOXK caMi ITi TOJIs.

Ammnonbekuit A.JI. BrmosHe reogesmyeckme BEKTOPHBIE IIOJISI Ha
ICEBIO-PUMAHOBOM MHOroobpasuu. B pabore paccmarpuBaroTcs
MOJIMHOr000pa3nsi B KacaTeJbHOM  PACCIOCHHHM  IICEBJIO-DUMAHOBA
MHOroo0Opasusi, IMOPOXK/JaeMble BEKTODHBIMHU MOJSAMH HA  0a30BOM
mHOrooOpasuu.  HaiimerHo BbIpakeHme s BTOPOil (dyHIaMeHTaAIbLHON
BOPMBI 9TOr0 MHOI00Opa3usl OTHOCUTEIBHO I0JIsI HOPMaJIieil CIeIuaJbHOrO
Buga. llojydeHo ypaBHeHHWE Ha BIIOJIHE T'€OJE3MYHOCTH HEM30TPOITHOIO
€JIMHUIHOTO BEKTOPHOIO 10Jisi. HaiiieHbl Bee By MEepHBIE [ICEBI0-PUMAHOBBI
MHOroo0Opasusi, JOIyCKAIOIINE BIIOJHE TIe0Je3NIeCKNe HEHM30TPOITHBIE
BEKTOPHBIE TI0JIs, I HAWIEHBI CAMU 9TU BEKTOPHBIE ITOJIA.

2000 Mathematics Subject Classification 53B25, 53C42.

(© Yampolsky A.L., 2011



Bicuuk Xapkiscbkoro namionasbuoro yuisepcurery im. B.H. Kapasina, 990 (2011) 5

Introduction

A unit vector field £ on the Riemannian manifold can be considered as a
mapping of the base manifold M into a unit tangent bundle 771 M with the Sasaki
metric. Denote by £(M™) the image of the mapping

€M™ — Ty M™

If the field is smooth, then £(M™) is a smooth submanifold in T3 M™, at least
locally. This fact allows to assign to the vector field the intrinsic properties of
E(M™) (e.g. the sectional curvature, the Rici curvature, the scalar curvature) [1],
and the extrinsic properties, such as the mean curvature [2, 3, 4] and the totally
geodesic property [5]. Thus, the vector field & is called locally-minimal, if the
mean curvature of £(M™) C Ty M™ is equal to zero and totally geodesic, if this
image is the totally geodesic submanifold in the unit tangent bundle.

The Sasaki metric is constructed by using the metric of the base manifold and
the Levi-Civita connection. Evidently, the Sasaki metric can be defined on the
tangent bundle of the pseudo-Riemannian base manifold as well. If M®9 is of
signature (p, ¢), the TM P9 is of signature (2p, 2¢). The tangent bundle of vectors
of fixed length p splits into three connected components: (+4) the subbundle of
the space-like vectors T,M P9 (p > 0); (—) the subbundle of the time-like vectors
T,M®P9 (p < 0); (0) the subbundle of the isotropic vectors TyM ). The Sasaki
metric on ToM P9 is degenerated.

In this paper we consider the non-isotropic vector fields of the length |¢|? = £1
on the pseudo-Riemannian manifold M @9 and the image & (M (»9) in the corre-
sponding connected component. We derive the system of differential equations
which provides the field a totally geodesic property and give a complete solution of
this system in case of the two-dimensional pseudo-Riemannian manifold, similar
to the description of such fields on the two-dimensional Riemannian manifold [6].

1. Necessary definitions and results

Let M™ be a smooth manifold of dimension n with the local parameters

(ul,...,u"). If we denote by 0; (i = 1,...,n) the natural tangent frame, then
for the any tangent vector & we have the decomposition & = &1 9y + -+ 4+ €7 0,.
The parameters (u',...,u"; &4, ..., €") form the natural local coordinate system

on the tangent bundle T'M™.

Let (M9 g) be a pseudo-Riemannian manifold of the signature (p, q) (n =
= p+q). Denote by D¢ = d¢? + Fékfjduk the covariant differentials of tangent
vector £ coordinates with respect to the Levi-Civita connection F;k of the metric

g. Similar to the Riemannian case, the Sasaki metric on TM®% is given by
do? = gipdu'du® + g, DEDEF

or, in invariant form,
2 3.2 2
do” = ds” + | DE|;.
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The signature of do? is equal to (2p, 2q).
At each point (Q,&) € TM (79) we have the following decomposition

Tiq.e)(TM) =Viqe) ® Hqe),

where the subspace V(g ¢) is tangent to the fiber TQM(p"I) and the subspace H g ¢)

is transversal to the fiber ToM (P.9) The subspaces Vg,e) and Hg ¢ are called
vertical and horizontal subspaces respectively. Denote by m, and K the differential
of the projection 7 : TM — M and the connection map [7| respectively. Then

V(Qf) (TM) = ker Tk s 'H(Qé) (TM) = ker K.
If X = X0; is a vector field on the base, then
XM =X, - T X 0, X' = X' 0nsi

and are vector fields on TM®%9 . They are called by horizontal and vertical lifts
of X respectively.
The scalar product with respect to the Sasaki metric is given by

(X.¥ )= (X, m¥), + (KX, KV,
The following Lemma was proved by A. Gray [9] (the Riemannian case was
treated by O. Kowalski [8]).

Lemma 1 Let (M(p*q),g) be a pseudo-Riemannian manifold, V is the Levi-Civita
connection of M, R(X,Y)Z is a curvature tensor of g. Then the Levi-Clivita
connection NV of the Sasaki metric on TM®9 is completely defined by

VanYh = (VxY)" = L(R(X,Y)€)", ViuY? = (VxY)" + L(R(&,V)X)",
VY = L(R(E X))V, Vxe YV = 0.
at each point (Q,§) € TM.

Consider a subbundle in TM®% | formed by the vectors of the length €2 =e=
= +1. These subbundles are hypersurfaces in TM (?9 with the pull-back metrics
and are called the bundles of unit space-like vectors for ¢ = +1 and the bundle
unit time-like vectors for e = —1, respectively. In what follows, we refer to these
subbundles as the bundle of e-unit vectors and denote by T, M.

2. The second fundamental form of a unit vector field.

Let € be a vector field on M @9, The vector field € is called a unit space-like,
if [£]? = +1 and @ unit time-like, if |€|?> = —1, respectively. We call such a field
by e-unit vector field for brevity.

Consider the e-unit vector field £ as a (local) mapping

£ M@PD AP, (1)
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The image &£(MP9) is a submanifold in e-unit tangent bundle 7.M @9 given
locally by

u' =l &= (u, ") (2)

with respect to natural coordinates in TM®9 . The Sasaki metric of the tan-
gent bundle TM®%) defines a metric on T,M ™9 and on £(MP9) in a chain of
inclusions

EMPDy c T.MPD) c TP,

For any vector field X on M, the differential of (1) acts by
§X = X"+ (Vx€)" = X" — (4:X)",

where A¢ X = —V x¢ is the non-holonomic Waingarten operator.
In these terms, the metric on (M) takes the form

<§*X,§*Y>S:<X,Y>g+<A5X,A§Y>g. (3)
The conjugate Weingarten operator Aé is defined by

(AeX)Y) = (X, AY ) .

f R A gj and hence it is well-defined since the

In local coordinates, (Ag)
metric g is non-degenarate.

It is easy to check that the normal bundle of f(M(p’q)) C T.M P9 is spanned
on the vector fields of the form

N = (AN)" + (N)°,

where N € ¢+,
Now we can formulate our basic lemma.

Lemma 2 With respect to the normal vector field N = (AéN)h + (N)¥ on
EMWPDY c T.MPD | the second fundamental form of E(MP9) is given by
Qg(&X,&Y) =
1
— 3 ((VxAY + (Vy A X + Ac(R(E A X)Y + R(E, AY)X), N ) (4)

where (VxAg)Y = vayf —VxVy& and N € fL.

The prof is straightforward and repeats the proof in the Riemannian case [10].
As a consequence, we receive the following condition on &(M (p’q)) c T.M P9
to be totally geodesic.
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Lemma 3 The submanifold §(M(p’Q)) C T.M®9 s totally geodesic if and only
if the field £ satisfies
(VxAe)Y + (VyAg) X+
Ac(R(§,AeX)Y + R(§,AcY)X) —2€e( A X, AY Y =0 (5)

for any vector fields X,Y on M®9).

Indeed, the vertical lift £V is the field of unit normals on T¢ M. That is why Q=0
if and only if

(VxAe)Y + (VyA) X + Ae(R(E, AcX)Y + R(E, AcY)X) = A€,

One can find the function A by multiplying the latter equation by £ and noticing
that

(VxA)Y, &) = ((VyA)X. &) = (AeX, AY ), [€ =

3. Totally geodesic unit vector fields on M 11,

The equation (5) always admits a trivial solution V€ = 0. In the two-
dimensional case it means that the manifold is flat. Remark also, that if £ is
the totally geodesic field, then —¢ is the totally geodesic as well. Similar to the
Riemannian case [6], we can solve the equation (5) completely with respect to the
field and the base manifold in the following terms.

Theorem 1 Let MY be a pseudo-Riemannian non-flat 2-manifold. Suppose
M®Y admits the totally geodesic e-unit vector field &. Then either

o MY admits a metric of the form

ds® = e(du® — sin*a dv?),

—1
where a = a(u) is a solution of the differential equation e 42 .
CoS (v

The corresponding totally geodesic e-unit vector field is

sinh(av 4+ w
+£ = cosh(av + wp) Oy + ﬂ Oyp.
sin a(u)
or
o MY admits a metric of the form
ds® = e(du® — sinh? o dv?),

o} a+1
where o = a(u) is a solution of the differential equation — =1 — —; .
cosh «

The corresponding totally geodesic e-unit vector field is

ch(av + wp)

+¢& = sh(av + wp) Oy + sinh o (u)
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Proof. Let e, e be an orthonormal frame on M1 | Set
ler|? = e, lea]? = —e, e==+1.

Let € be the e-unit vector field on MY | Denote by 1 a (—e)-unit vector field
which is orthogonal to €. Then we have

Acer = A1, Agea = o).

If MY ig non-flat, then there exists a non-isotropic orthonormal frame e, es
such that
Agel = 0, A§€2 = )\T), (6)

Indeed, we take
Xo=Xer —Area, Yp=Arer —Ayea.

Then
[ Xo|* = e(A3 = A]),  [Yo|* = —e(A3 = A]) = —|Xof*, (Xo,Y0) =0

and
AeXo =0, AYo =€ Xol*n.

If X is isotropic, than the field € is parallel on M (1) and hence MY is flat. By
normalizing (X, Yp), we get the required frame.
Take a frame eg, eo which satisfies (6). Put

Velel = kl €9, V6262 = kg €1.

Then
Veleg = klel, ve2€1 = kQ €9.

AS Velf = 0 and v62€ = —A562 = —)\777 we have
ve177:07 vegn: —/\f

As (Ve A¢)er, = Ve, (Ager) — Ae(Ve,er), we have

(Ve,Ag)er = Ve, (Ager) — Ae(Vee1) = —k1Ages = —ki A

(Ve,Ag)ez = Ve, (Agez) — Ag(Veye2) = Ve, (An) — Ag(kier) = ex(A)n.
(Ve Ag)er = Ve, (Ager) — Ag(Veyer) = —Ag(kaez) = —kaA

(Vey Ag)ez = Ve, (Agea) — Ae(Veyez) = Ve, (An) = ea(A)n — A%

As R(el, 62)5 = (V@Ag)el — (VelAg)eg, we find

R(er,e2)€ = — (koA + e1(N))n = —Kn,
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where we have put K = ko X + e1(\). Hence,
(R(e1,e2)é,n) = —K|n|*.
In dependence on the orientation of the pair (&,7), we have
(R(e1,e2)é,m) =—K|n|* =€eK  for (+) orientation,
(R(e1,e2)é,n) = —K|n|*> = —eK for (—) orientation.

Uniformly,
(R(er,e2)€6,m) = (~1)"Mek, (7)

where s = 0 for (+) orientation and s = 1 for (—) orientation of (¢, 7) frame.
As a consequence,

R(§,Acer)er =0, R(E, Acer)ea =0,

R(&, Acea)er = —eA( R(eq, €2)€,m Yea = (—1)*AK ey,
R(§, Agea)es = eX( R(ez, e1)€,m )er = (—1)*AKey,
AcR(E, Acer)er = 0, AcR(E, Acer)es = 0,

A¢R(E, Aceg)er = (—1)5A2K1, A¢R(E, Ageg)es = 0.

If we put sequentially (X =e1,Y =¢€1), (X =e€1,Y =e¢3) and (X = e2,Y = e9)
and plug the results above into (5), then we get respectively

—kA=0,
(e1(\) — koA) + (=1)*A2K = 0, (8)
62()\) =0.

By hypothesis, the manifold is not flat and so, £ is not parallel. Therefore, A # 0
and from (8); we conclude k; = 0. We can rewrite the equation (8), as follows

e1(\) — kad + (=1)°A% (koA 4+ e1(\)) = 0

k__1+@4fVeﬂM
2T I(=1)5A2 A

Thus, we reduce the system (8) to

k1 =0,
k2:jl+(—1fA26ﬂA)

1(=1)5A2 X 7
e2(A) = 0.
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As k1 = 0, the integral trajectories of e; are e-geodesics. Therefore, it is possible
to introduce the local semi-geodesic system of coordinate on M1 and simplify
the metric to the form

ds* = e(du® — f?(u,v) dv?)

with €1 = 81, €y = % 82. After thiS,

fu
ko = —
f
In case s = 1, we have
¢ =chwe; +shwes, ‘§|2:€a

n=shwe; +chwey
and the equation (9), yields

w1 =22 er(A
J;: 1+ A2 61/(\ ! (10)

Put A\ = tan(a/2), where o = a(u, v) is some function. From (9), it follows that
Oya = 0 and the equation (10) takes the form

o f
f

The solution is f = C(v)sina, where C(v) is arbitrary positive function. By
making the parameter change, we reduce the metric to the form

= ctga Jya.

ds® = e(du® — sin® a dv?),

where av = a(u). Moreover, we have
Opw
Ve, & = (ea(w) + ko)n = | —— +ctga Oya | n.
sin «

tg(a/2) =X = ,avw +ctga Oy
sin «

and hence
Oyw = sin a(tg(a/2) — ctg a Iy ).

As « does not depend on v, we conclude w = av + wy. Thus, the function «
satisfies
cos o Oy — 2sin?(a/2) = —a

or, equivalently,

do _ 4 a—1
du cosa
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As a conclusion,

h
¢ = ch(av + wp) Oy + M Oy
sin ()
In case s = 2, we have
¢ =shwe; + chwesy, |€2| = —e,
n=chwe; +shwes
and the equation (9), yields
14+ A% er(A
Ju 14X al) (11)
F 1o
Put
A = th(a/2),

where o = o(u, v) is some function. From (8), it follows that

Oy =0
and (11) yields
Ou f
= ctha 9,0.
f
The solution is
f=C(v)sha,

where C(v) is arbitrary positive function. By making a parameter change, we
reduce the metric to the form

ds® = e(du® — sh? a dv?),

where a = a(u). Moreover, we have

Oy
Ve, & = Ve, (shwey + chwes) = (e2(w) + k2)n = (sh(;z) +ctha 8ua> n.
This means that 3
W
h(a/2) =)A= ha 0,
tanh(a/2) = A T +ctha O«

or, equivalently,
Oyw = sha(tanh(a/2) — cth a 0yar).

As «a does not depend on v,
w = av + wg.

Hence, o satisfies
cha d,a — 2sh?(a/2) = —a
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or, after the transformations,

dfail_a—kl
du cha '

As a conclusion,
ch(av + wp)

¢ = sh(av + wo) Oy + sha(w)

Oy.-
The Theorem is proved.

n
If K is the Gaussian curvature of M1 then K = —ea,. Indeed, for the
metric ds? = e¢(du® — f? dv?®) we have

K =—¢ @
f
Therefore, in the case
d -1
ds* = e(du® — sin® a dv?), o 4
du cos o
we have
Ju=cosaa, =cosa(-1—2L) = —cosa— (a— 1),
fuuw = sin(a) o, = f oy,
and hence

-1
K:—eau:e<1+a )
cos &

In the case
da 1 a+1

du cha’

ds® = e(du® — sh? a dv?),

the similar calculations yield

1
K:—eau:—e(l—a+ )
cho

In the case of the Riemannian 2- manifold of constant curvature, the totally
geodesic unit vector field exists on the manifold of the Gaussian curvature K =1
[1]. In contrast, in the case of the pseudo-Riemannian 2-manifold, the totally
geodesic e-unit vector field exists both for K = 1 and for K = —1 (for corre-
sponding values of a). The corresponding totally geodesic submanifolds &(M (1’1))
are located in 7.1 M or T_1 M, respectively.
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