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1. Introduction

It is well-known [1] that linear codes over a two-element field are precisely
subgroups of an elementary Abelian 2-group G. It is naturally to consider
subsets in G which are close to subgroups, as codes which are close to
linear ones. In this connection in [3] the notion of a defect of a subset
of a group G has been introduced as a measure of a deviation from a
subgroup (so that a subset has the defect 0 only if it is a subgroup).

The subsets of defect 1 and 2 are described in [3]. In this description
so called standard subsets play a leading role (see definition in section
2): all subsets of defect 1 are standard, and among subsets of defect 2
there is only one non-standard. In this article we show, that all subsets
of defect 3 containing not less than 12 elements, are standard, and we
describe all non-standard ones.

One can suppose that this situation is kept in the general case: large
subsets of the fixed defect are standard. However now we do not know,
whether this assumption is true.

2. Properties of the defect

Everywhere further G denotes a finite elementary Abelian 2-group, T its
subset containing the identity , |T | number of elements in T , 〈T 〉 the
subgroup of G, generated by T . Besides for any element a ∈ T \1 we put
Ta = T \ aT .

A defect of a subset T is a number def T = max
a∈T

|Ta|.

If H is a subgroup of G and T ⊂ H then def T ≤ |H\T |. In particular,
putting H = 〈T 〉, we get inequality:

|T | + def T ≤ |〈T 〉|.
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We call T standard, if |T | + def T = |〈T 〉|.
For example, if F is a subgroup of G, H is a subgroup of F and

T = (F \ H) ∪ 1 then T is standard and def T = |H| − 1. Subsets of the
form T = (F \ H) ∪ 1 will be called strictly standard.

Obviously, subsets of defect 0 are exactly subgroups. The following
results for defect 1 and 2 have been obtained in [3]:

Theorem 1. Each subset of defect 1 is of the form T = H \ a, where H

is a subgroup of G, a ∈ H.

Theorem 2. Let def T = 2. Then either T is standard or |T | = 4 and
|〈T 〉| = 8 (so T \ 1 is a basis of 〈T 〉).

Thus, subsets of defect 1 are strictly standard, and subsets of de-
fect 2, except the single one in essence, are standard (but are not strictly
standard).

In [3] the following result also has been received: if a, b, c are different
non-identity elements of G then G \ {a, b, c} has defect 3. We shall use
this statement below.

It is useful to interpret the notion of defect in terms of graphs [2].
To a subset T we compare a graph Γ(T ) in the following way: vertices
of Γ(T ) are elements of T \ 1 and edges are such pairs of vertices (a, b)
that ab 6∈ T . Then the degree of the vertex a equals deg a = |Ta| and
def T = max

a∈T
deg a.

In this section we obtain some general properties of subsets of any
defect.

Theorem 3. Let C1, C2, . . . , Cr be connected components of the graph
Γ = Γ(T ), 1 ≤ i 6= j ≤ r. Then

1) There is such k ≤ r that CiCj ⊂ Ck.

2) If in 1) k 6= i then aCj = Ck for every a ∈ Ci.

Proof. 1) It follows from definition of Γ that CiCj ⊂ T . Let a ∈ Ci.
Since aCj is connected, it is contained in some component Ck. Similarly,
if x ∈ Cj then Cix ⊆ Cl for some l ≤ r. But since ax ∈ aCj ∩ Cix then
k = l and k does not depend on a choice of a and x. Hence, CiCj ⊂ Ck.

2) Let a ∈ Ci, aCj ⊂ Ck. Then Cj ⊂ aCk. As i 6= k, by the first part
of Theorem aCk ⊂ Cj . Hence, aCk = Cj .

We shall call a subset T homogeneous, if def T = deg a for all a ∈ T \1
(i. e. if Γ(T ) is homogeneous). Theorem 4 gives more detailed information
about structure of homogeneous subsets. We shall preliminary prove
several assertions.
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Proposition 1. Let T be a homogeneous subset, Ci, Cj , Ck such con-
nected components of Γ = Γ(T ), that CiCj ⊂ Ck and i 6= j. Then
aCj = Ck for all a ∈ Ci.

Proof. Note that the graph aCj is isomorphic to the graph Cj , hence the
homogeneous graph Ck contains a homogeneous subgraph of the same
degree. From here aCj = Ck.

Corollary 1. All connected components of the graph of a homogeneous
subset T are isomorphic.

Proof. Let Ci, Cj be connected components of Γ(T ). According to Theo-
rem 3 and Proposition 1 there is such a component Ck that CiCj = Ck.
Moreover components Cj and Ck = aCj (a ∈ Ci) are isomorphic. Sim-
ilarly Ci and Ck are isomorphic. Therefore Ci and Cj are isomorphic
too.

Proposition 2. If the graph Γ(T ) of a homogeneous subset T is not
connected then its components are complete graphs.

Proof. Let us assume that Γ = Γ(T ) is not connected and that among
its connected components there is a non-complete one. Accordingly to
Corollary 1 all components of Γ are isomorphic, so all of them are non-
complete.

Let us consider components Ci, Cj , Ck, for which i 6= j and CiCj =
Ck. Since Ci is a non-complete connected component then |Ci| ≥ 3 and
there are such a, b ∈ Ci that ab ∈ T . Then ab ∈ Cm for some m. We
shall prove that m = i. If it not so, CiCm ⊂ Ci, since, for example,
b = a · ab ∈ CiCm. Then accordingly to Corollary 1 xCm = Ci for all
x ∈ Ci. In particular, for x = a we have: aCm 6∋ a and Ci ∋ a; the
contradiction.

Thus ab ∈ Ci. Then aCj = bCj = abCj = Ck, whence Cj = bCj =
CiCj = Ck. So j = k. Similar reasoning for the non-complete component
Cj shows, that i = k. We get a contradiction again.

Theorem 4. If T is homogeneous then either Γ(T ) is connected or T is
strictly standard.

Proof. Suppose that Γ(T ) is not connected. Then by Proposition 2 all
its components are complete.

Let C1 6= C2 are components of Γ(T ), x ∈ C1. We denote H = xC1

and prove that H is a subgroup.

Let C1C2 ⊂ C3. According to Proposition 1
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xC2 = C3 = C1y for any y ∈ C2. Then C3 = Hxy, whence C2 =
C3x = Hy. Therefore for a, b ∈ H we have: ax · by ∈ C3, i. e. aby ∈ C2 =
Hy. From here ab ∈ H.

Besides, it follows from this reasoning that every component has a
form Ci = xiH. Since the product of two various components contains
in some component (Theorem 3), then F = T ∪ H is a subgroup, and
T = (F \ H) ∪ 1. By the definition T is strict standard.

We shall prove two more lemmas which will be used below for subsets
of defect 3.

Lemma 1. deg a ≡ def T (mod 2) for every a ∈ T \ 1.

Proof. Since a(T ∩ aT ) = T ∩ aT then T ∩ aT contains, together with
every x, an element ax and, hence, |T ∩aT | is even. From here |T | = |T ∩
aT |+ |Ta| ≡ |Ta|(mod 2) for all a ∈ T . In particular, |T | ≡ def T (mod 2).
Thus, deg a ≡ def T (mod 2).

Lemma 2. If a, b, ab ∈ T then deg ab ≤ deg a + deg b.

Proof. Suppose the opposite: let deg a = k, deg b = m, deg ab = p >

k + m. Then there are x1, . . . , xp ∈ T \ 1 for which abx1, . . . , abxp 6∈ T .
Not less than p − m elements among elements bxj (1 ≤ j ≤ p) are
contained in T ; let, for example, bx1, . . . , bxp−m ∈ T . Since p − m > k

by hypothesis, there is such xi (1 ≤ i ≤ p − m) that abxi ∈ T , and we
obtain a contradiction.

From Lemmas 1 and 2 it follows

Corollary 2. If def T is odd and a, b, ab ∈ T then deg ab ≤ deg a +
deg b − 1.

In particular,

Corollary 3. If a, b, ab ∈ T , and deg a = deg b = 1 then deg ab = 1.

3. Non-homogeneous subsets of defect 3

From Lemma 1 it follows that a subset of defect 3 can contain only
elements of the degree 1 and 3. A number of following statements of this
section is right for any subsets of odd defect, containing elements of the
degree 1; therefore we shall assume, that T is just such a subset. If T

will be a subset of defect 3 we shall stipulate it.
We introduce the following designations: T1 = {a ∈ T |deg a = 1},

H = 〈T1〉, S = T1 ∪ 1.
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Lemma 3. |H \ T1| ≤ 2.

Proof. If aS = S for every a ∈ T1 then S, obviously, coincides with H

and the lemma is proved. Suppose it is not so, i. e. aS \ S 6= ∅ for some
a ∈ T1. Let us fix some x ∈ aS \ S. Then x = ab, where b ∈ T1. By
Corollary 3 x 6∈ T (otherwise deg x = 1 and x ∈ S), hence x ∈ aT \ T .
In view of the fact that deg a = 1, we obtain |aS \ S| = 1 and def S = 1.
However, by Theorem 1 S is standard, |H \ S| = 1, so |H \ T1| = 2.

Thus, two cases are possible. We shall consider them separately:

1) S = H \ f , where f is an element from H;

2) S = H.

Proposition 3. If S = H \ f then T \ S is the join of cosets of H.

Proof. We shall prove that the equality h(T \ S) = T \ S is right for
every h ∈ H. Notice that for any a ∈ T1 the degree of af also is equal
1. Therefore f 6∈ T (otherwise f ∈ T1 by Corollary 3), so Ta = {af}.
Hence, a(T \ S) ⊂ T . Besides a(T \ S) ∩ S = ∅. Really, if it is not so,
there is such t ∈ T \ S, that at ∈ T1, but this contradicts Corollary 3.

Thus a(T \ S) = T \ S for all a ∈ T1. Since af ∈ T1 then f(T \ S) =
fa · a(T \ S) = fa(T \ S) = T \ S.

Corollary 4. If S = H \ f and def T ≥ 3 then def T ≥ |T1| + 3.

Proof. T ∪ H = T ∪ {f} is not a subgroup, otherwise def T = 1 by
Theorem 1. It follows out of Corollary 3 that there are x, y ∈ T \H such
that xy 6∈ T ∪ H. But then xyH ∩ (T ∪ H) = ∅, so Tx ⊃ yH. Besides
the element fx 6∈ yH also is contained in Tx. Hence, deg x ≥ |H| + 1 ≥
|T1| + 3.

>From here we obtain immediately that if def T = 3 then the case
1) is impossible, so, H = S = T1 ∪ 1. In this situation (the case 2)) for
every a ∈ T1 there is an unique x ∈ T \ T1 such that w = xa 6∈ T . Fix
the elements a and x.

Proposition 4. Let def T ≥ 3, T1 ∪ 1 = H. Then one of the following
statements takes place:

1) T1 ⊂ Tx.

2) If b ∈ T1, y ∈ T and by 6∈ T then by = w. Besides T ∪w is the join of
cosets of H.
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Proof. Assume that 1) is not executed and b ∈ T1 \ Tx, such that b 6= a

and b ∈ Ty for some y 6= x. Since deg a = deg b = 1 then xb, ya ∈ T .
As T1 ∪ 1 is a subgroup, ab ∈ T1 and by Corollary 3 deg ab = 1. But
xb · ab, ya · ab 6∈ T , so xb = ya, whence yb = w. From here it follows also,
that T ∪ w is the join of cosets of H.

Corollary 5. If the condition 2) of Proposition 4 is executed then
def T ≥ |T1| + 2.

Proof. Since def T 6= 1, Theorem 1 implies that T ∪w is not a subgroup.
Therefore such u, v ∈ T exist that uv 6∈ T ∪ w, and at the same time at
least one of these elements, for example u, is not contained in H. Then
uH · v ∩ T = ∅, whence deg v ≥ |H|. As |H| is even, we get from here
def T ≥ |H| + 1 = |T1| + 2.

Corollary 6. If def T = 3 and T1 ⊂ Tx then either |T1| = 3 or |T1| ≤ 1.

Proof. According to the condition Tx ⊃ T1, therefore |T1| ≤ 3. Since
T1 ∪ 1 is a subgroup for a subset T of defect 3, |T1| 6= 2.

Proposition 5. If def T = 3, T1 ⊂ Tx and |T1| = 3 then T is standard.

Proof. It is enough to show, that 〈T 〉 = T ∪xT1. Indeed, T1T ⊂ T ∪xT1.
Besides, since Tx ⊃ T1 and |T1| = 3 then Tx = T1. Hence, xy ∈ T for
every y ∈ T \ T1. Consider an arbitrary element a ∈ T1. Notice that
axy ∈ T , otherwise xy ∈ Ta = {x}. So xyT1 ⊂ T and Ty = xyT1. But
then yT ⊂ T ∪ xT1.

Corollary 7. If def T = 3 and T is non-standard then |T1| ≤ 1.

The next theorem is applicable both to homogeneous and to non-
homogeneous subsets of defect 3 and essentially confines a class of graphs
which can correspond to these subsets.

Theorem 5. If T is non-standard and def T = 3 then diameters of
connected components of Γ(T ) do not exceed 2.

Proof. We shall prove by contradiction, using an induction on |T |. Let
a, b ∈ T and

r r r r
a x y b (1)

is the shortest way from a to b in the graph Γ. Then ax, xy, yb 6∈ T ,
ay, xb, ab ∈ T .

Let H be a subgroup generated by elements a, x, y, b. We shall prove
some auxiliary statements (Lemmas 4 – 7).
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Lemma 4. Elements a, x, y, b form a basis in H.

Proof. If in the subgroup H it holds w = 1 for some word w in the alpha-
bet {a, x, y, b}, then the length of w should be not less than 3 because
all elements a, x, y, b are different. Therefore w coincides with one of the
words axyb, axy, axb, ayb, xyb. If axyb = 1, then ab = xy, but ab ∈ T ,
and xy 6∈ T ; the contradiction. If axy = 1 then y = ax 6∈ T . The other
variants are similarly impossible.

Lemma 5. T 6⊂ H.

Proof. Assume that T ⊂ H. Since T is non-standard, it is contained in
H \ T (in addition to ax, xy, yb) even one of elements axyb, axy, axb,
ayb, xyb. Consider the possible cases.

1) axb 6∈ T . Then xb ∈ Ta and ab ∈ Tx. Hence Tx = {a, y, ab} and
therefore axy ∈ T . Similarly from Tab = {x, xb, ay} it follows ayb ∈
T . But then x, xb, ayb, axy ∈ Ta. By Lemma 4 all these elements are
different, so |Ta| ≥ 4, that is impossible. Hence axb ∈ T and similarly
ayb ∈ T .

2) axy 6∈ T, axb, ayb ∈ T . Then Tx{a, y, ay}. Therefore ayb 6∈ Tx, i.e.
axyb ∈ T . If xyb 6∈ T there would be a way of length 2:

r r r
a axyb b

contrary to the assumption. Hence xyb ∈ T . But then Tx ⊇ {a, y, ay, xyb}.
The contradiction. Therefore axy ∈ T and similarly xyb ∈ T .

3) axyb 6∈ T, axy, axb, ayb, xyb ∈ T . Then Tx ⊇ {a, y, ayb, xyb}, that
is impossible.

Remark. Proving in Lemma 5 the inequality |Tt| ≥ 4 for some
t ∈ T , we base each time on Lemma 4. Further we shall use this lemma
without the reference to it.

Denote T = H ∩ T , Γ = Γ(T ).

Lemma 6. def T = 3 and T is standard.

Proof. For any t ∈ T we have:

T \ tT = (T ∩ H) \ (tT ∩ H) = (T ∩ H) \ tT,

whence |T \tT | ≤ |T \tT | ≤ 3. Suppose that def T = 2. From T x = {a, y}
and ay ∈ T it follows axy ∈ T . But then T y ⊇ {x, b, axy} and def T ≥ 3.

Thus def T = 3. Since |T | < |T | (Lemma 5) and the way (1) is
contained in T , then by the assumption of induction T is standard.



A
D

M
 D

R
A

F
T

B. V. Novikov, L. Yu. Polyakova 55

Evidently, T = H \ {ax, xy, yb} and Γ has the form

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

@
@

a

x ayb

axy

xyb

axby

b

r

r

r

r

r rr r

ay ab xb

axyb

r r r

r

Denote these components by C1 and C2.

Lemma 7. zH ⊂ T for every z ∈ T \ T .

Proof. Since all vertices of C1 have the degree 3, z is not connected with
any of them by an edge, i.e. zC1 ⊂ T , and for the same reason abz ∈ T .
If zT 6⊂ T , let, for example, ayz 6∈ T . Then az ∈ Ty = {x, b, axy} ⊂ H

contrary to z 6∈ H. Therefore zT ⊂ T .
It remains to show that z(H \ T ) ⊂ T . If zax 6∈ T then za ∈ Tx =

{a, x, xyb}. The contradiction. Hence, zax ∈ T and similarly zxy, zyb ∈
T .

Returning to the proof of the theorem, we note, that in each coset
zH ⊂ T there is an element u, such that |Tu| = 3 (e.g., Tu = {xz, axyz,

aybz} for u = az).
Denote by K the join of all cosets of H which have nonempty inter-

section with T (in fact, by Lemma 7 all of them, except H, are contained
in T ). We shall prove, that K is a subgroup. Indeed, let uH and vH

be two different cosets, such that uH 6= H 6= vH, uH ∪ vH ⊂ T . Be-
sides, let their representatives u and v be chosen in such a way that
|Tu| = |Tv| = 3. If uv 6∈ T then v ∈ Tu = {axu, xuy, ybu}. This is
impossible, since uH 6= vH. Hence uv ∈ T and uvH ⊂ T .

But then T = K \ {ax, xy, yb} is standard.

Now we can prove the main result of this section:

Theorem 6. If def T = 3 and T is non-homogeneous then T is standard.

Proof. Assume the opposite. Let T1 6= ∅. Then according to Corollary 7
T1 = {a} for some a ∈ T . Let x ∈ T \ T1 and ax 6∈ T . Since deg x = 3,
there is such an element u ∈ T \ T1 that xu 6∈ T . Furthermore, there are
such v1, v2 ∈ T \ T1 that vi 6= x, viu 6∈ T (i = 1, 2). We obtain a way

r r r r
a x u v1
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By Theorem 5 az, zv1 6∈ T for some z ∈ T . Since deg a = 1 then
z = x and xv1 6∈ T . Similarly xv2 6∈ T . But then deg x ≥ 4. This is
impossible.

4. Homogeneous subsets of defect 3

In this section we shall assume, that T is a non-standard homogeneous
subset of defect 3. In this case its graph Γ(T ) is connected by Theorem
4. We shall find out, how Γ(T ) looks and show that there are only 3
non-standard homogeneous subsets.

We need the following lemma:

Lemma 8. Let a ∈ T and Ta = {b, c, d}. Then either bc, bd, cd 6∈ T or
bc, bd, cd ∈ T .

Proof. Obviously, if bcd = 1, the lemma is right. Let bcd 6= 1. Assume
opposite, let, e.g., bc ∈ T , bd 6∈ T . Since bcd 6= 1 then bc 6∈ Ta. Therefore
abc ∈ T , whence abc ∈ Tb ∩Tc. Consider the shortest way from b to bc (it
exists because Γ(T ) is connected). By Theorem 5 it contains not more
than two edges. As bc 6∈ Ta ∪ Tb ∪ Tabc, this way consists of edges (b, d)
and (d, bc), so bcd 6∈ T (see fig.).
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Since abc 6∈ Td = {a, b, bc}, abcd ∈ T , but then abcd ∈ Ta = {b, c, d},
what leads to the contradiction.

Consider two cases for the graph Γ(T ).

1) Let such a vertex a exist in Γ, that Ta = {b, c, d} and bcd 6= 1. If
bc, bd, cd 6∈ T then by Lemma 8 we get that Γ is the complete graph K4

with four vertices:
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On the other hand, if bc, bd, cd ∈ T we get abc, abd, acd ∈ T (be-
cause bc, bd, cd 6∈ Ta). From here Tb = {a, abc, abd}, Tc = {a, abc, acd},
Td = {a, abd, acd}. We note also that bcd ∈ T , otherwise cd ∈ Tb =
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{a, abc, abd}, what is impossible. Therefore the graph Γ in this case
should look so:
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However, diameter of this graph equals 3, what contradicts Theorem
5. Thus, this case is impossible.

2) Consider now the case when for all t ∈ T , from Tt{x, y, z} it follows
xyz = 1. Let a ∈ T . Then Ta has a form Ta = {b, c, bc} for some b, c ∈ T .
Besides Tb = {a, d, ad} for some d ∈ T . From here it follows

ab, ac, abc, bd, abd 6∈ T. (2)

We shall consider several subcases:

a) Suppose that cd ∈ T . Then cd ∈ Tbc ∩ Tad. Since Tcd ⊃ {ad, bc}
then Tcd = {ad, bc, abcd}, and similarly Tbc = {a, cd, acd}, Tad = {b, cd, bcd}.
It follows from (2) that Tacd = {d, bc, bcd}, Tbcd = {c, acd, ad}, Tabcd =
{c, d, cd}, Td = {acd, b, abcd}, Tc = {a, bcd, abcd}. Therefore the graph
looks so:
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It is so-called Petersen graph [2].

b) Analogously, if abcd ∈ T , we obtain the same graph.

c) If cd, abcd 6∈ T , Γ(T ) = K3,3, a complete bipartite graph:
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Thus, we proved

Theorem 7. If T is a non-standard homogeneous subset of defect 3,
then Γ(T ) is either the complete graph K4, or the Petersen graph, or the
complete bipartite graph K3,3.

To formulate the main result of this section, we need the next defini-
tion.

Let T, U are subsets of the group G. We say that T is isomorphic

to U if there exists such a bijection f : T → U that f(ab) = f(a)f(b),
as soon as a, b, ab ∈ T (this definition means that Γ(T ) and Γ(U) are
isomorphic).

Theorem 8. Each homogeneous subset T of defect 3 is either standard,
or isomorphic to one of the following subsets

1) {1, x, y, z, w},

2) {1, x, y, z, w, xw, yz},

3) {1, x, y, z, w, xy, xz, xw, yz, yw, zw},

where x, y, z, w are linearly independent elements of the group G.

Proof. Let T be non-standard. By Theorem 7 its graph Γ(T ) is:
either the complete graph K4, and then T = {1, a, b, c, d};
or the complete bipartite graph K3,3, and then T = {1, a, b, c, d, ad, bc};
or the Petersen graph, and then T = {1, a, b, c, d, ad, bc, cd, acd, bcd, abcd}.

The last subset is isomorphic to the subset 3) from the condition of the
theorem. Indeed, isomorphism between them is realized by function f ,
for which

f(a) = x, f(b) = yz, f(c) = yw, f(d) = w.

From the description of subsets of defect 3, and also from Theorems
1 and 2, we obtain the following

Corollary 8. Let a, b, c, d be different elements from G \ 1. Then for the
set T = G \ {a, b, c, d} the following statements are fulfilled:

If |G| = 8 then T is either a subgroup of order 4 or a non-standard
subset of defect 2.

If |G| > 8 then T is a (standard) subset of defect 4.
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Proof. Evidently, def T ≤ 4. Let |G| = 8. Then T contains, besides 1,
three more elements. If they are linearly dependent, T is a subgroup if
not then T is a subset of defect 2 by Theorem 2.

Let |G| > 8. Note that T cannot be a standard subset of defect,
smaller than 4. Then by Theorem 1 def T 6= 1. Non-standard subsets
of defect 2 contain 4 elements, and non-standard ones of defect 3 can
contain only 5, 7 or 11 elements. Since |T | = 2k − 4 for some natural
k ≥ 4 then def T 6= 2 and def T 6= 3.
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